

ffirs.indd iffirs.indd i 04/12/12 5:12 PM04/12/12 5:12 PM

PROFESSIONAL WORDPRESS®:

DESIGN AND DEVELOPMENT, SECOND EDITION

INTRODUCTION . xxi

CHAPTER 1 First Post . 1

CHAPTER 2 Code Overview. .21

CHAPTER 3 Working with WordPress Locally .41

CHAPTER 4 Tour of the Core . 57

CHAPTER 5 The Loop . 73

CHAPTER 6 Data Management . 101

CHAPTER 7 Custom Post Types, Custom Taxonomies, and Metadata 115

CHAPTER 8 Plugin Development . 139

CHAPTER 9 Theme Development . 211

CHAPTER 10 Multisite . 259

CHAPTER 11 Content Aggregation . 289

CHAPTER 12 Crafting a User Experience . 309

CHAPTER 13 Statistics, Scalability, Security, and Spam . 337

CHAPTER 14 WordPress as a Content Management System 365

CHAPTER 15 WordPress in the Enterprise . 383

CHAPTER 16 WordPress Developer Community . 397

INDEX . 411

ffirs.indd iffirs.indd i 04/12/12 5:12 PM04/12/12 5:12 PM

ffirs.indd iiffirs.indd ii 04/12/12 5:12 PM04/12/12 5:12 PM

PROFESSIONAL

WordPress®

ffirs.indd iiiffirs.indd iii 04/12/12 5:12 PM04/12/12 5:12 PM

ffirs.indd ivffirs.indd iv 04/12/12 5:12 PM04/12/12 5:12 PM

PROFESSIONAL

WordPress®

DESIGN AND DEVELOPMENT

Second Edition

Brad Williams
David Damstra

Hal Stern

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 04/12/12 5:12 PM04/12/12 5:12 PM

Professional WordPress®: Design and Development, Second Edition

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-44227-2
ISBN: 978--1118-44229-6 (ebk)
ISBN: 978-1-118-60438-0 (ebk)
ISBN: 978-1-118-60423-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012950504

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. WordPress is a registered trademark of WordPress Foundation. All
other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product
or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 04/12/12 5:12 PM04/12/12 5:12 PM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

For my wife, my partner, my best friend April

Williams. You’ll never know how much you mean to

me. Thank you for putting up with my nerdy ways

and always supporting me.

—Brad Williams

For my loving wife Holly, my children - Jack, Justin

and Jonah. Thanks for your love and support.

—David Damstra

For Toby, whose patience grows with each project.

—Hal Stern

ffirs.indd viiffirs.indd vii 04/12/12 5:12 PM04/12/12 5:12 PM

EXECUTIVE EDITOR

Carol Long

PROJECT EDITOR

Christina Haviland

TECHNICAL EDITOR

Hal Stern

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Nancy Rapoport

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Sarah Kaikini, Word One

INDEXER

Robert Swanson

COVER DESIGNER

Elizabeth Brooks

COVER IMAGE

© Karen Phillips / iStockphoto

CREDITS

ffirs.indd viiiffirs.indd viii 04/12/12 5:12 PM04/12/12 5:12 PM

ABOUT THE AUTHORS

BRAD WILLIAMS is the co-founder of WebDevStudios.com, a cohost on the WP Late Night podcast,
and the coauthor of Professional WordPress and Professional WordPress Plugin Development. Brad
has been developing websites for over 15 years, including the last 5 where he has focused
on open-source technologies like WordPress. Brad has given presentations at various WordCamps
across the country and is a co-organizer of the Philadelphia WordPress Meetup and
WordCamp Philly. You can follow Brad online on his personal blog at http://strangework.com
and on Twitter @williamsba.

DAVID DAMSTRA is a vice president of Professional Services for CU*Answers, a credit union service
organization. David manages a team of developers to create websites and web applications for the
fi nancial industry. David’s team uses WordPress as the foundation for many web projects. David
is also a Zend Certifi ed Engineer for PHP5. You can fi nd David online professionally at http://
ws.cuanswers.com where he focuses on web technology and best practices for web development,
especially pertaining to the credit union industry, and personally at http://mirmillo.com where
he talks about his family and home brewing.

HAL STERN is a Vice President with a major technology company focusing on software architecture
for programmable networks and architectures for “big data” applications. Hal began blogging as
part of a corporate communications effort at Sun Microsystems, and has been using WordPress
to share thoughts on music, sports, food, and New Jersey for the past fi ve years. Hal’s affi nity for
WordPress internals began when he was trying to determine how a mangled URL returned almost-
correct content, and that curiosity has turned into his contributions to this book and a WordCamp
talk. Hal is online at http://snowmanonfire.com and @freeholdhal.

ffirs.indd ixffirs.indd ix 04/12/12 5:12 PM04/12/12 5:12 PM

http://strangework.com
http://ws.cuanswers.com
http://ws.cuanswers.com
http://mirmillo.com
http://snowmanonfire.com
http://WebDevStudios.com
https://twitter.com/williamsba
https://twitter.com/freeholdhal

ACKNOWLEDGMENTS

THANK YOU to the love of my life, April, for your endless support, friendship, and continuing to put
up with my nerdy ways. Thank you to my awesome nieces, Indiana Brooke and Austin Margaret.
Thank you to the entire WordPress community for your support, friendships, motivation, and
guidance. Thank you to Michael, Jason, Freddy, and Hannibal for always lurking in the shadows.
Last but not least, thank you to my ridiculous zoo: Lecter, Clarice, and Squeaks the Cat (aka Kitty
Galore). Your smiling faces and wiggly butts always put a smile on my face.

—Brad Williams

ffirs.indd xffirs.indd x 04/12/12 5:12 PM04/12/12 5:12 PM

CONTENTS

INTRODUCTION xxi

CHAPTER 1: FIRST POST 1

What Is WordPress? 1

Popularity of WordPress 3

Current State 3

Intersecting the Community 4

WordPress and the GPL 5

Content and Conversation 6

WordPress as a Content Management System 6

Creating Conversation 7

Getting Started 8

Hosting Options 8

Do It Yourself Installation 10

Finishing Up 17

First-Time Administration 17

First Post 19

Summary 20

CHAPTER 2: CODE OVERVIEW 21

Downloading 21

Download Locations 21

Available Formats 22

Release Archive 22

Directory and File Structure 23

WordPress Confi guration 24

wp-confi g.php File 24

Advanced wp-confi g Options 26

.htaccess 31

The .maintenance File 35

wp-content User Playground 36

Plugins 36

Themes 37

Uploads and Media Directory 37

Upgrade Directory 38

ftoc.indd xiftoc.indd xi 04/12/12 9:18 AM04/12/12 9:18 AM

xii

CONTENTS

Custom Directories 38

Summary 39

CHAPTER 3: WORKING WITH WORDPRESS LOCALLY 41

Benefi ts of Working Locally 41

Typical Deployment Cycle 42

Why So Much Process? 42

Tools for Component Administration 43

Getting Your Development Stack 44

Adding WordPress to the Local Install 45

Confi guration Details 46

Managing the Web Server Document Tree 46

Enabling Debug Information 48

Handling Local and Production Database 50

Creating Virtual Local Server Names 50

Local Theme and Plugin Development 53

Deploying Local Changes 53

Summary 55

CHAPTER 4: TOUR OF THE CORE 57

What’s in the Core? 57

Using the Core as a Reference 58

Inline Documentation 59

Finding Functions 60

Exploring the Core 62

Deprecated Functions 65

WordPress Codex and Resources 66

What Is the Codex? 66

Using the Codex 66

Function Reference 67

WordPress APIs 69

Codex Controversy 71

Don’t Hack the Core! 71

Why Not? 71

Alternatives to Hacking the Core 72

Summary 72

CHAPTER 5: THE LOOP 73

Understanding the Loop 74

From Query Parameters to SQL 75

ftoc.indd xiiftoc.indd xii 04/12/12 9:18 AM04/12/12 9:18 AM

xiii

CONTENTS

Understanding Content in WordPress 76

Putting the Loop in Context 76

Flow of the Loop 77

Template Tags 79

Commonly Used Template Tags 80

Tag Parameters 81

Customizing the Loop 81

Using the WP_Query Object 82

Building a Custom Query 83

Adding Paging to a Loop 85

Using query_posts() 86

Using get_posts() 87

Resetting a Query 88

More Than One Loop 90

Advanced Queries 91

Global Variables 93

Post Data 93

Author Data 94

User Data 95

Environmental Data 95

Global Variables or Template Tags? 96

Working Outside the Loop 97

Summary 100

CHAPTER 6: DATA MANAGEMENT 101

Database Schema 101

Table Details 103

WordPress Content Tables 104

WordPress Taxonomy Tables 105

WordPress Database Class 106

Simple Database Queries 106

Complex Database Operations 108

Dealing with Errors 110

Direct Database Manipulation 111

Summary 114

CHAPTER 7: CUSTOM POST TYPES, CUSTOM TAXONOMIES,
AND METADATA 115

Understanding Data in WordPress 115

What Is a Custom Post Type? 116

Register Custom Post Types 116

ftoc.indd xiiiftoc.indd xiii 04/12/12 9:18 AM04/12/12 9:18 AM

xiv

CONTENTS

Setting Post Type Labels 121

Working with Custom Post Types 122

Custom Post Type Template Files 123

Special Post Type Functions 124

WordPress Taxonomy 126

Default Taxonomies 126

Taxonomy Table Structure 126

Understanding Taxonomy Relationships 127

Building Your Own Taxonomies 128

Custom Taxonomy Overview 128

Creating Custom Taxonomies 128

Setting Custom Taxonomy Labels 131

Using Your Custom Taxonomy 132

Metadata 133

What Is Metadata? 134

Adding Metadata 134

Updating Metadata 135

Deleting Metadata 135

Retrieving Metadata 136

Summary 137

CHAPTER 8: PLUGIN DEVELOPMENT 139

Plugin Packaging 140

Creating a Plugin File 140

Creating the Plugin Header 140

Plugin License 141

Activating and Deactivating Functions 142

Internationalization 143

Determining Paths 145

Plugin Security 147

Nonces 147

Data Validation and Sanitization 148

Know Your Hooks: Actions and Filters 151

Actions and Filters 151

Popular Filter Hooks 153

Popular Action Hooks 154

Plugin Settings 156

Saving Plugin Options 156

Array of Options 157

Creating a Menu and Submenus 158

Creating an Options Page 160

WordPress Integration 169

ftoc.indd xivftoc.indd xiv 04/12/12 9:18 AM04/12/12 9:18 AM

xv

CONTENTS

Creating a Meta Box 169

Shortcodes 174

Creating a Widget 175

Creating a Dashboard Widget 179

Creating Custom Tables 180

Uninstalling Your Plugin 182

Creating a Plugin Example 184

Publishing to the Plugin Directory 203

Restrictions 204

Submitting Your Plugin 204

Creating a readme.txt File 204

Setting Up SVN 208

Publishing to the Plugin Directory 209

Releasing a New Version 210

Summary 210

CHAPTER 9: THEME DEVELOPMENT 211

Why Use a Theme? 211

Installing a Theme 212

FTP Installation 212

Theme Installer 213

What Is a Theme? 213

Template Files 214

CSS 214

Images and Assets 214

Plugins 215

Creating Your Own Theme 215

Project Themes vs. Child Themes 215

What to Look for in a Starter Theme 216

Creating Your Own Theme: Getting Started 217

Essential File: Style.css 217

Showing Your Content: Index.php 218

Showing Your Content in Diff erent Ways: Index.php 220

Creating Your Own Theme: DRY 220

Header.php 221

Footer.php 222

Sidebar.php 222

Deviations from the Norm: Conditional Tags 223

Creating Your Own Theme: Content Display 224

Customizing Your Homepage: Front-Page.php 225

Show Your Older Posts by Date: Archive.php 227

Showing Only One Category: Category.php 228

ftoc.indd xvftoc.indd xv 04/12/12 9:18 AM04/12/12 9:18 AM

xvi

CONTENTS

Show Posts of a Specifi c Tag: Tag.php 230

Other Archival Templates 231

How to Show a Single Post: Single.php 231

Display a Page: Page.php 232

Display Post Attachments: Attachment.php 233

Template Hierarchy 233

Creating Your Own Theme: Additional Files 235

Handle 404 Errors: 404.php 235

Author.php 236

Comments.php 237

Adding Functionality to Your Templates: Functions.php 238

Search.php 240

SearchForm.php 242

Other Files 242

Custom Page Templates 243

When to Use Custom Page Templates 243

How to Use Custom Page Templates 244

Stock Twenty Eleven Page Templates 245

Other Theme Enhancements 246

Menu Management 246

Widget Areas 248

Post Formats 249

Theme Settings 250

Theme Customizer 251

Theme Hierarchy and Child Themes 251

Premium Themes and Other Theme Frameworks 256

Bones Theme 256

Carrington Theme 257

Genesis Theme 257

Hybrid Core Theme 257

Roots 257

StartBox Theme 258

Thematic Theme 258

Summary 258

CHAPTER 10: MULTISITE 259

What Is Multisite? 259

Multisite Terminology 260

Diff erences 260

Advantages of Multisite 261

Enabling Multisite 261

Working in a Network 262

ftoc.indd xviftoc.indd xvi 04/12/12 9:18 AM04/12/12 9:18 AM

xvii

CONTENTS

Network Admin 263

Creating and Managing Sites 263

Working with Users and Roles 264

Themes and Plugins 264

Settings 265

Domain Mapping 265

Coding for Multisite 265

Blog ID 265

Common Functions 266

Creating a New Site 270

Network Admin Menus 274

Multisite Options 276

Users in a Network 282

Super Admins 285

Network Stats 286

Multisite Database Schema 287

Multisite-Specifi c Tables 287

Site-Specifi c Tables 287

Summary 288

CHAPTER 11: CONTENT AGGREGATION 289

Getting Noticed 290

Social Media Buttons 291

Feeding WordPress Upstream 292

Buttons, Badges, or Both? 292

Simple Social Networking Badges 293

Collecting External Content 294

Integrating a YouTube Video 295

Integrating Twitter 296

Google Maps 298

Integrating Facebook 299

Generic XML Data 299

Transients 301

Advertising 303

Monetizing Your Site 303

Setting Up Advertising 304

Privacy and History 307

Summary 308

CHAPTER 12: CRAFTING A USER EXPERIENCE 309

User Experience Principles 309

Consistent Navigation 310

ftoc.indd xviiftoc.indd xvii 04/12/12 9:18 AM04/12/12 9:18 AM

xviii

CONTENTS

Visual Design Elements 312

Making Content Easy to Find 314

Site Load Times 314

Using JavaScript 316

Usability and Usability Testing 316

Structuring Your Information 318

Getting Your Site Found 320

Duplicate Content 321

Trackbacks and Pings 323

Tags and Content Sharing Sites 324

How Web Standards Get Your Data Discovered 324

Semantic HTML 324

Valid HTML 326

Microformats 327

HTML5 329

CSS3 330

Searching Your Own Site 331

Weaknesses of the Default Search 331

Alternatives and Plugins to Help 332

Mobile Access and Responsive Web Design 334

Leave It Alone 334

Lightweight Mobile 335

Responsive Design 335

Summary 336

CHAPTER 13: STATISTICS, SCALABILITY, SECURITY, AND SPAM 337

Statistics Counters 337

AWStats 338

Google Analytics 340

JetPack by WordPress.com 342

Cache Management 343

WordPress System Complexity 344

Web Server Caching and Optimization 345

WordPress Object Caching 347

Transient Caches 347

MySQL Query Cache 348

Load Balancing Your WordPress Site 349

Dealing with Spam 350

Comment Moderation and CAPTCHAs 350

Automating Spam Detection 351

Securing Your WordPress Site 352

ftoc.indd xviiiftoc.indd xviii 04/12/12 9:18 AM04/12/12 9:18 AM

xix

CONTENTS

Staying Up-to-Date 352

Hiding WordPress Version Information 353

Limit Login Attempts 354

Using Good Passwords 354

Changing Your Table Prefi x 354

Moving Your Confi guration File 354

Moving Your Content Directory 355

Using the Secret Key Feature 355

Forcing SSL on Login and Admin 356

Apache Permissions 356

MySQL Credentials 357

Recommended Security Plugins 357

Using WordPress Roles 360

Subscriber Role 361

Contributor Role 361

Author Role 361

Editor Role 361

Administrator Role 362

Super Admin Role 362

Role Overview 362

Extending Roles 363

Summary 364

CHAPTER 14: WORDPRESS AS A CONTENT MANAGEMENT SYSTEM 365

Defi ning Content Management 365

Workfl ow and Delegation 367

User Roles and Delegation 367

Workfl ow 368

Content Organization 370

Theme and Widget Support 370

Homepages 372

Featured Content Pages 373

Content Hierarchy 376

Interactivity Features 379

Forums 379

Forms 379

E-Commerce 380

Other Content Management Systems 380

WordPress Integration 381

Where Not to Use WordPress 381

Summary 382

ftoc.indd xixftoc.indd xix 04/12/12 9:18 AM04/12/12 9:18 AM

xx

CONTENTS

CHAPTER 15: WORDPRESS IN THE ENTERPRISE 383

Is WordPress Right for Your Enterprise? 383

When WordPress Isn’t Right for You 385

Scalability 386

Performance Tuning 386

Caching 388

Regular Maintenance 388

Hardware Scaling 389

Integration with Enterprise Identity Management 391

LDAP and Active Directory 391

OpenID and OAuth 392

Content Integration via Feeds 393

Summary 395

CHAPTER 16: WORDPRESS DEVELOPER COMMUNITY 397

Contributing to WordPress 397

Understanding Trac 398

Working on the Core 401

Submitting Plugins and Themes 402

Documentation 402

Sister Projects 403

BuddyPress 403

bbPress 403

Future Projects 403

Resources 404

Codex 404

Support Forums 404

WordPress Chat 405

Mailing Lists 405

External Resources 406

WordCamp and Meetups 407

WordPress.TV 407

Theme/Plugin Directories 407

WordPress Ideas 407

WordPress Development Updates 408

Make WordPress.org 408

WordPress Podcasts 408

WordPress News Sites 409

Summary 410

INDEX 411

ftoc.indd xxftoc.indd xx 04/12/12 9:18 AM04/12/12 9:18 AM

INTRODUCTION

DEAR READER, Thank you for picking up this book. WordPress is the most popular self-hosted
website software in use today. It is available as an open source project, licensed under the GPL, and
is built largely on top of the MySQL database and PHP programming language. Any server envi-
ronment that supports that simple combination can run WordPress, making it remarkably portable
as well as simple to install and operate. You don’t need to be a systems administrator, developer,
HTML expert, or design aesthete to use WordPress.

On the other hand, because WordPress has been developed using a powerful set of Internet standard
platforms, it can be extended and tailored for a wide variety of applications. WordPress is the
publishing mechanism underneath thousands of individual blog voices and the engine that powers
high-volume, high-profi le sites such as CNN’s websites and blogs. It was designed for anyone
comfortable navigating a browser, but is accessible to web designers and developers as well. Given
this range of applications and capabilities, it can prove hard to know where to start if you want to
make use of the power of WordPress for your specifi c purposes. Should you fi rst study the database
models and relationships of content and metadata, or the presentation mechanics that generate the
HTML output?

This book was designed for readers to develop a knowledge of WordPress from the inside out,
focusing on the internal structure and fl ow of the core code as well as the data model on which
that code operates. Knowing how something works often makes you more adept at working with
it, extending it, or fi xing it when it breaks. Just as a race car driver benefi ts from a fundamental
 knowledge of combustion engines, aerodynamics, and the mechanics of automobile suspension,
someone driving WordPress through its full dynamic range will be signifi cantly more adept once
acquainted with the underlying software physics.

WHO THIS BOOK IS FOR

It was the dichotomy between the almost trivial effort required to create a WordPress-based website
and publish a “fi rst post” to the world and the much more detailed, broad understanding required
to effect mass customization that led us to write this book. Many books on the market provide
guidance to beginning bloggers by walking you through the typical functions of creating, confi gur-
ing, and caring for your WordPress site. Our goal was to bridge the gap between an expert PHP
developer who is comfortable reading the WordPress Codex in lieu of a manual and the casual
WordPress user creating a public persona integrated with social networking sites and advertising
services, with a tailored look and feel.

In short, we hope to appeal to a range of developers, from the person looking to fi ne-tune a
WordPress theme to a more advanced developer with a plugin concept or who is using WordPress in
a large enterprise integrated into a content management system. We do this by exploring WordPress
from the inside out. Our goal for this book is to describe the basic operation of a function, and

flast.indd xxiflast.indd xxi 04/12/12 9:18 AM04/12/12 9:18 AM

xxii

INTRODUCTION

then offer guidance and examples that highlight how to take it apart and reassemble that function to
fi t a number of needs. WordPress users who are not hardened PHP developers may want to skim
through the developer-centric section, whereas coders looking for specifi c patterns to implement
new WordPress functionality can start in the middle and work toward the end.

WHAT THIS BOOK COVERS

This book is divided into three major sections: Chapters 1 through 4 are an overview of the
WordPress system, its major functional elements, and a top-level description of what happens when
a WordPress-generated web page is displayed. Chapters 5 through 9 build on this foundation and
dive into the core of WordPress, describing internal code fl ow and data structures. This middle
section is strongly developer-oriented, and describes how to extend WordPress through plugins
and customize it via themes. The last section, Chapters 10 through 16, combines a developer view
of user experience and optimization with the deployer requirements for performance, security, and
enterprise integration.

HOW THIS BOOK IS STRUCTURED

The following is a detailed chapter-by-chapter overview of what you can expect to fi nd in this book.

Chapter 1, “First Post,” contains a brief summary of the history of the WordPress software core,
explores some popular hosting options, why community matters in a content-centric world, and
concludes with the basics of do-it-yourself WordPress installation and debugging.

Chapter 2, “Code Overview,” starts with the mechanics of downloading the WordPress
distribution and describes its basic contents and fi lesystem layout. A top-to-bottom code fl ow walks
you from an index or specifi c post URL, through the process of selecting posts, assembling content,
and generating the displayed HTML. This chapter is a map for the more detailed code tours in the
developer-focused section.

Chapter 3, “Working with WordPress Locally,” covers the many benefi ts to working with
WordPress on your local computer. This chapter also reviews the various setups for local
development on a Microsoft Windows or Apple OSX computer. Finally you’ll cover how to deploy
your local changes to a remote server using various deployment methods.

Chapter 4, “Tour of the Core,” examines the essential PHP functions comprising the basic
WordPress engine. It serves as an introduction to the developer-focused middle section of the book
and also lays the foundation for the deployment-, integration-, and experience-focused chapters in
the last section. This chapter also covers using the core as a reference guide, and why it is best not to
hack the core code to achieve desired customizations.

Chapter 5, “The Loop,” is the basis for the developer-centric core of this book. The WordPress main
loop drives the functions of creating and storing content in the MySQL database, as well as extracting
appropriate chunks of it to be sorted, decorated, and nested under banners or next to sidebars, in

flast.indd xxiiflast.indd xxii 04/12/12 9:18 AM04/12/12 9:18 AM

xxiii

INTRODUCTION

both cases generating something a web browser consumes. This chapter disassembles those
processes of creating, saving, and publishing a new post as well as displaying content that has been
stored in the WordPress MySQL databases. The underlying database functions and the management
of content metadata are covered in more detail to complete a thorough view of WordPress’ internal
operation.

Chapter 6, “Data Management,” is the MySQL-based counterpart to Chapter 5. The core functions
create, update, and manipulate entries in multiple MySQL database tables, and this chapter covers
the database schema, data and metadata taxonomies used, and the basic relations that exist between
WordPress elements. It also includes an overview of the basic query functions used to select and
extract content from MySQL, forming a basis for extensions and custom code that needs to be able
to examine the individual data underlying a WordPress site.

Chapter 7, “Custom Post Types, Custom Taxonomies, and Metadata,” explores the different types
of content and associated data in WordPress. You’ll cover how to register and work with custom
post types for creating custom content in WordPress. Custom taxonomies are also dissected, diving
into the various setups with examples. Finally you’ll cover post metadata, and the proper ways to
store arbitrary data against posts in WordPress.

Chapter 8, “Plugin Development,” starts with the basic plugin architecture and then explores the
hook, action, and fi lter interfaces that integrate new functionality around the WordPress core. This
chapter demonstrates the interposition of functions into the page composition or content management
streams and how to save plugin data. Examples of building a plugin using a simple framework
outline the necessary functionality of any plugin. This chapter also covers creation of widgets,
simpler-to-use plugins that typically add decoration, additional images, or content to a sidebar;
many plugins also have a widget for easier management. Publishing a plugin to the WordPress repository
and pitfalls of plugin confl ict round out the discussion of WordPress’ functional extensions.

Chapter 9, “Theme Development,” is the display and rendering counterpart to Chapter 8. Plugins
add new features and functions to the core, whereas themes, CSS and page templates change the
way that content is shown to readers. Starting with a basic theme, this chapter covers writing a
theme, building custom page templates, menu management, widget areas, post formats, theme
installation, and how thematic elements are used by the functions described in previous chapters.
This chapter ends the deep developer-focused middle section of the book.

Chapter 10, “Multisite,” explores the popular Multisite feature of WordPress. You’ll learn the
advantages of running your own Multisite network, how to properly install Multisite, working in a
network, creating sites and users, managing themes and plugins, and even domain mapping. The
last part of the chapter explores coding for Multisite and the various functions and methods avail-
able for use.

Chapter 11, “Content Aggregation,” looks at WordPress from a services point of view. If a website
represents your public persona or online presence, it has to pull content from a variety of tools and
content sources. This chapter delves into web services interfaces, WordPress APIs, feeds into and out
of WordPress, and making WordPress entries show up in Facebook pages.

flast.indd xxiiiflast.indd xxiii 04/12/12 9:18 AM04/12/12 9:18 AM

xxiv

INTRODUCTION

Chapter 12, “Crafting the User Experience,” looks at a WordPress installation from the
perspective of a regular or potential reader. Usability, testing, and the ease of fi nding information
within a WordPress website form the basics, with added emphasis on web standards for metadata
and search engine optimization so content can be found through an appropriate Google search.
Whereas Chapter 11 covers pulling external content into your WordPress instance, this chapter
shows how to get your content to show up elsewhere on the Web. Alternatives for adding search
functionality, one of WordPress’ weaknesses, are discussed, along with content accessibility and
delivery to mobile devices.

Chapter 13, “Statistics, Scalability, Security, and Spam,” deals with good and bad popularity.
Keeping a WordPress installation safe from inevitable comment spammers as well as malicious
attackers is a key part of confi guration and management, and this chapter covers the more popular
security and anti-spam plugins and features. Traffi c analysis tools indicate how well certain content
types, functions, ad campaigns, promotions, or links are driving readership and how this informs
traffi c management.

Chapter 14, “WordPress as a Content Management System,” goes beyond blogging to examples
of WordPress as a system for managing the life cycle, integration, and distribution of networked
content.

Chapter 15, “WordPress in the Enterprise,” tackles issues of scale and integration. WordPress
may address defi ciencies in “enterprise scale” content management tools, and building on the
mechanisms covered in Chapter 12, this chapter shows how to use WordPress with a variety of
enterprise facilities ranging from identity management to Microsoft ASP.NET services.

Chapter 16, “WordPress Developer Community,” is an introduction to contributing to
the WordPress ecosystem by working on the core, submitting plugins or themes, adding to the
documentation canon, and assisting other developers. An overview of WordPress sister projects such
as bbPress for forums is provided along with a brief summary of other developer resources and a
glossary of WordPress-context sensitive terms.

WHAT YOU NEED TO USE THIS BOOK

You’ll need at least a rudimentary understanding of HTML and some knowledge of cascading
style sheets (CSS) to make use of the theme and user experience sections of the book. Experience in
writing and debugging PHP code is a prerequisite for more advanced developer sections, although
if you’re just going to make changes based on the samples in this book, you can use the code as a
template and learn on the fl y. A basic knowledge of databases, especially the syntax and semantics
of MySQL, is in order to make the most out of the chapter on data management as well as develop
plugins that need to save data.

It’s helpful to have an interactive development environment in which to view PHP code, or PHP code
sprinkled through HTML pages. Choosing a set of developer tools often borders on religion and
deep personal preference (and we know plenty of coders who believe that vi constitutes a
development environment). Some of the more user-friendly tools will make walking through the
WordPress code easier if you want to see how functions used in the examples appear in the core.

flast.indd xxivflast.indd xxiv 04/12/12 9:18 AM04/12/12 9:18 AM

http://ASP.NET

xxv

INTRODUCTION

Most important, if you want to use the code samples and examples in this book, you’ll need a
WordPress website in which to install them. Chapter 1 covers some basic WordPress hosting options
as well as the simple mechanics of downloading the components, and installing WordPress on a
desktop or test machine for debugging and closer inspection.

Finally, some people might argue that to really take advantage of WordPress you need to be able to
write, but that ignores the basic beauty of the WordPress platform: it takes the power of the printing
press to an individual level. This book isn’t about what you say (or might say); it’s about how you’re
going to get those ideas onto the web and how the world will see them and interact with your blog.

The source code for the samples is available for download from the Wrox website at:

www.wrox.com/remtitle.cgi?isbn=9781118442272

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes indicate notes, tips, hints, tricks, or and asides to the current
discussion.

As for styles in the text:

 ➤ We italicize new terms and important words when we introduce them.

 ➤ We show fi le names, URLs, and code within the text like so: persistence.properties.

 ➤ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that's particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

www.wrox.com/remtitle.cgi?isbn=9781118442272

flast.indd xxvflast.indd xxv 04/12/12 9:18 AM04/12/12 9:18 AM

http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://www.wrox.com
http://www.wrox.com/remtitle.cgi?isbn=9781118442272

xxvi

INTRODUCTION

You can also search for the book at www.wrox.com by ISBN. A complete list of code downloads for
all current Wrox books is available at www.wrox.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN, which is 978-1-118-44227-2.

At the beginning of each chapter for which there is downloadable code, we’ve provided a reminder
of the URL at which you can fi nd the code fi les. Throughout each chapter, you’ll also fi nd references
to the code fi le names in listing titles or the text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive format
appropriate to the platform. Once you download the code, just decompress it with your preferred
compression tool.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to:

www.wrox.com/remtitle.cgi?isbn=9781118442272

And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsup-
port.shtml and complete the form there to send us the error you have found. We’ll check the
information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

flast.indd xxviflast.indd xxvi 04/12/12 9:18 AM04/12/12 9:18 AM

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://www.wrox.com
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://P2P.WROX.COM

xxvii

INTRODUCTION

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join the forum.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxviiflast.indd xxvii 04/12/12 9:18 AM04/12/12 9:18 AM

http://p2p.wrox.com
http://p2p.wrox.com

flast.indd xxviiiflast.indd xxviii 04/12/12 9:18 AM04/12/12 9:18 AM

First Post

WHAT’S IN THIS CHAPTER?

 ➤ Appreciating the provenance of the WordPress platform

 ➤ Choosing a suitable platform for your WordPress installation

 ➤ Downloading, installing, and performing basic confi guration of

WordPress

 ➤ Diagnosing and resolving common installation problems

If displaying “Hello World” on an appropriate device defi nes minimum competence in a pro-
gramming language, generating your fi rst post is the equivalent in the online publishing world.
This chapter provides a brief history of WordPress and then explores several options for host-
ing a WordPress installation. Common miscues and misperceptions along with their resolu-
tions round out the chapter and put you on the edge of publishing your wit and wisdom.

Once you’ve installed, confi gured, and completed the bare-bones administration, you’re ready
to take advantage of the code walk-throughs and detailed component descriptions in later
chapters. Of course, if you already have a functional WordPress website, you can skip this
chapter, and dive in headfi rst to explore the core code in Chapter 2, “Code Overview.”

WHAT IS WORDPRESS?

WordPress is one of the most popular open source content management systems available,
with global and vibrant user, developer, and support communities. While it can be compared
to TypePad, Moveable Type, Google’s Blogger, and the Apache Roller project as a user-gener-
ated content workhorse, WordPress distinguishes itself with a broad array of hosting options,
functional extensions (plugins), and aesthetic designs and elements (themes).

1

c01.indd 1c01.indd 1 12/6/12 1:11 AM12/6/12 1:11 AM

2 ❘ CHAPTER 1 FIRST POST

With the rise of self-publishing, low-cost web hosting, and freely available core components like the
MySQL database, blogging software followed the same trend as most other digital technologies,
moving from high-end, high-cost products to widely available, low-cost consumer or “hobbyist”
systems. WordPress isn’t simply about creating a blog so that you can have a digital diary
attached to your vanity URL; it has evolved into a full-fl edged content management system used
by individuals and enterprises alike. This section takes a brief tour through the early history of
WordPress and brings you up to speed on the current release and user community.

WordPress started similarly to many other popular open source software packages: Some talented
developers saw a need to create a powerful, simple tool based on an existing project licensed under
the GPL. Michel Valdrighi’s b2/cafelog system provided the starting point, and WordPress was built
as a fork of that code base by developers Matt Mullenweg and Mike Little. WordPress fi rst appeared
in 2003 and was also built on the MySQL open source database for persisting content with PHP as
the development platform. Valdrighi remains a contributor to the project, which is thriving as it has
a growing and interested community of users and developers on a growing and interested
community of users and developers.

As with other systems written in PHP, it is self-contained in the sense that installation,
confi guration, operation, and administration tasks are all contained in PHP modules. WordPress’s
popularity has been driven in part by its simplicity, with the phrase “fi ve-minute installation”
making appearances in nearly every description or book about WordPress. Beyond getting to a fi rst
post, WordPress was designed to be extended and adaptable to the different needs of
different people.

WordPress today is supported by a handful of core developers and many key contributors. Mike
Little runs the WordPress specialty shop zed1.com and he contributes the occasional patch to the
code. Matt Mullenweg’s company, Automattic, continues to operate the wordpress.com hosting
service as well as fund development of related content and site management tools, including Akismet,
multi-site WordPress, and Gravatar. Akismet is a robust, Automattic-hosted spam detection and
protection service with a statistically (and incredibly) low failure-to-detect rate. Previously known
as WordPress MU, multi-site WordPress functions are at the heart of the wordpress.com hosting
system and are now merged into the main WordPress source tree. Gravatar dynamically serves images
tied to e-mail addresses, providing a hosted icon with a variety of display options. Think of it as a
service to make hot-linking your profi le picture technically and socially acceptable.

As a content management system, the WordPress system defi nition doesn’t stop at time-serialized
posts with comments. BuddyPress is a set of themes and plugins that extends WordPress into a
functional social networking platform, allowing registered users to message and interact with
each other, again with all content managed within the WordPress framework. Similarly, bbPress
is a PHP- and MySQL-based system designed for forums (bulletin boards) that is distinct from
WordPress but is commonly integrated with it.

Chapter 16, “WordPress Developer Community,” covers some of the WordPress adjunct systems in
more detail, but they’re included here to provide a sense of how WordPress has expanded beyond a
basic single-user–oriented tool. At the same time, the authors are not endorsing or making a
commercial for Automattic, but delving into the guts of WordPress without a spin of the propeller
hat toward Mullenweg and Little is somewhere between incorrigible and bad community
behavior.

c01.indd 2c01.indd 2 12/6/12 1:11 AM12/6/12 1:11 AM

http://zed1.com
http://wordpress.com
http://wordpress.com

Popularity of WordPress ❘ 3

POPULARITY OF WORDPRESS

This book is based on the WordPress 3.5 major release. Each successive release of WordPress has
included improvements in the administration and control functions (Dashboard); backup, export,
and import functions; and installation and upgrade features. Even if you start with a slightly
down-rev version of WordPress, you’ll be able to bring it up to the current release and maintain the
freshness of your install. Install and upgrade paths are touched on later in this chapter. But just how
popular is WordPress?

Current State

Interest in WordPress and WordPress usage is booming. You’re holding in your hands a testament
to that. Just 3 years ago, very few WordPress books were available. Now this second edition has
been published. “Popular” is always a subjective metric, but statistics add some weight to those
 perceptions. According to Automattic, as of 2011, over 100,000 new WordPresses are created every
day (http://en.wordpress.com/stats/). That includes sites using WordPress for content
management, blogging, and personal rants, and has to be discounted by those of you who have
multiple WordPress installations to their names, but even with that order of magnitude estimate,
WordPress is immensely popular. Automattic cites nearly 74 million WordPress websites globally
with about half of them hosted at WordPress.com (http://en.wordpress.com/stats/). In the
previous edition of this book, that number was at only 5 million sites. In 2008, the offi cial
WordPress plugin repository hosted over 6,300 plugins, double the number from 2007. At the time
of this writing, the number of plugins now tops 19,000 (http://wordpress.org/news/2012/05/
plugins-refreshed/). There are over 1,500 unique themes in the offi cial WordPress theme
repository, which does not include all the commercial theme vendors and independent developers
creating their own custom themes.

The combinations of plugins and themes require scientifi c notation to represent in complexity,
but at the same time, they’re all equally simple to locate, integrate, and use. That’s the result of a
solid architecture and an equally solid community using it. In short, the ecosystem surrounding
WordPress is alive and thriving.

In August 2011, Matt Mullenweg presented the current state of WordPress use as well as results
from the fi rst-ever WordPress survey at the San Francisco WordCamp. The WordPress survey is
similar to a census of the WordPress community at large and how people use WordPress every day.
This includes independent web developers, corporate users, and hobbyists providing a great
cross-section of the larger WordPress population. The following highlights demonstrate how active
and prevalent WordPress is on the global Internet:

 ➤ Nearly 15 percent of the top 1 million visited websites use WordPress.

 ➤ On average, 22 of every 100 new websites run WordPress.

 ➤ More than 200 million plugins have been downloaded from the plugin repository.

 ➤ 18,000 individuals responded to the survey representing over 170,000 websites.

Mullenweg’s State of the Word keynote can be seen at WordPress.tv.

c01.indd 3c01.indd 3 12/6/12 1:11 AM12/6/12 1:11 AM

http://en.wordpress.com/stats/
http://en.wordpress.com/stats/
http://wordpress.org/news/2012/05/plugins-refreshed/
http://wordpress.org/news/2012/05/plugins-refreshed/
http://WordPress.com
http://WordPress.tv

4 ❘ CHAPTER 1 FIRST POST

Today, WordPress powers many large media companies’ websites or portions thereof, including
CNN’s blogs, the Wall Street Journal’s All Things D, Reuters, Forbes, and the irreverent but
snowclone-driven icanhazcheeseburger.com. (If you looked for a back story on “snowclone,”
apologies, but that’s also the joy of discovering new facts in a culture of participatory media.)
WordPress is used by Fortune 500 companies such as GM, UPS, and Sony. WordPress is a viable
choice for a range of users, from international conglomerates to major recording artists to huge
media publishing companies.” Some need reassurance before choosing WordPress and focus on
which big boys are using it, you can fi nd a list online at the WordPress Notable Users showcase
(http://en.wordpress.com/notable-users/).

But the simplicity, ease of use, and ultimately the power of the plugins and themes make WordPress
suitable for your mom’s family information website, your local elementary school teacher’s class-
room newsletter, and the hobbyist. These are truly some of the WordPress success stories of today
and these widely accessible, more narrowly popular websites are what makes WordPress popular.
WordPress is adaptable and will be as simple or complex as you need it to be. Empowering “lower
tech” users to be web publishers and then spreading the word (pun intended) to their family and
friends about how easy WordPress is to use have fueled this explosive growth and adoption.

Where do you get started? wordpress.org is the home for the current released and in-development
versions of the code. Click through to wordpress.org/extend for a starting point in fi nding
plugins, themes, and wish lists of ideas and features to be implemented.

wordpress.com has both free and paid hosting services. Over at wordpress.org/hosting you’ll
fi nd a list of hosting providers that support WordPress and often include some additional fi rst-time
installation and confi guration support in their packaging of the code for delivery as part of their
hosting services.

Intersecting the Community

WordPress thrives and grows based on community contributions in addition to sheer usage. Like
high school gym class, participation is the name of the game, and several semi-formal avenues along
which to channel your efforts and energies are available.

WordCamp events are community-hosted and locally operated, and now happen in dozens of
cities around the world. Offi cial WordCamps are listed on wordcamp.org, but you’ll do just as
well to search for a WordCamp event in a major city close to you. WordCamps occur nearly every
weekend with bloggers, photographers, writers, editors, developers, and designers of all experience
and skill levels counted among their attendees. WordCamps are a low-cost introduction to the local
community and often a good opportunity to meet WordPress celebrities. Visit wordcamp.org to fi nd
the next WordCamp.

Less structured but more frequently convened than WordCamps are WordPress Meetups, compris-
ing local users and developers in nearly 200 (up from the 40 mentioned in the fi rst edition of this
book) cities. You’ll need a meetup.com account, but once you’re registered, you can check on loca-
tions and timetables at wordpress.meetup.com to see when and where people are talking about
content management.

A rich, multi-language documentation repository is hosted at codex.wordpress.org. The
WordPress Codex, with all due respect to the term reserved for ancient handwritten manuscripts,

c01.indd 4c01.indd 4 12/6/12 1:11 AM12/6/12 1:11 AM

http://en.wordpress.com/notable-users/
http://icanhazcheeseburger.com
http://wordpress.com
http://wordpress.org
http://wordpress.org/extend
http://meetup.com
http://wordpress.meetup.com
http://codex.wordpress.org
http://wordpress.org/hosting
http://wordcamp.org
http://wordcamp.org

Popularity of WordPress ❘ 5

represents the community-contributed tips and tricks for every facet of WordPress, from
installation to debugging. If you feel the urge to contribute to the WordPress documentation,
register and then write to your heart’s content in the WordPress Codex. Hopefully you’ll fi nd this
book a cross between a companion and a travel guide to the Codex.

Finally, mailing lists (and their archives) exist for various WordPress contributors and communities.
A current roster is available online at codex.wordpress.org/Mailing_Lists; of particular interest
may be the wp-docs list for Codex contributors and the wp-hackers list for those who work on the
WordPress core and steer its future directions.

WordPress and the GPL

WordPress is licensed under the Gnu Public License (GPL) version 2, contained in the license.txt
fi le that you’ll fi nd in the top-level code distribution. Most people don’t read the license and simply
understand that WordPress is an open source project; however, pockets of corporate legal departments
still worry about the viral component of a GPL license and its implications for additional code
or content that gets added to, used with, or layered on top of the original distribution. Much of this
confusion stems from liberal use of the words “free” and “copyright” in contexts where they are
inappropriately applied.

The authors of this book are not lawyers — nor do they play them on the Internet or on
television — and if you really want to understand the nuances of copyright law and what constitutes
a “conveyance” of code, pick up some of Lawrence Lessig’s or Cory Doctorow’s work in those areas.
This section is included to minimize the concerns of IT departments who may be dissuaded from
using WordPress as an enterprise content management system by overly zealous legal teams. Don’t
let this happen to you; again, if WordPress is acceptable to CNN and the Wall Street Journal, two
companies that survive on the copyrights granted to their content, it probably fi ts within the legal
strictures of most corporate users as well.

The core tenet of the GPL ensures that you can always get the source code for any distribution of
GPL-licensed software. If a company modifi es a GPL-licensed software package and then redistributes
that newer version, it has to make the source code available as well. This is the “viral” nature of
GPL at work; its goal is to make sure that access to the software and its derivatives is never reduced
in scope. If you plan on modifying the WordPress core and then distributing that code, you’ll need
to make sure your changes are covered by the GPL and that the code is available in source code
form. Given that WordPress is written in PHP, an interpreted language, distributing the software
and distributing the source code are effectively the same action.

Following are some common misperceptions and associated explanations about using WordPress in
commercial situations.

 ➤ “Free software” means you can’t commercialize its use. You can charge people to use your
installation of WordPress, or make money from advertisements running in your website, or
use a WordPress content management platform as the foundation of an online store. That’s
how wordpress.com works; it also enables Google to charge advertisers for using their
Linux-based services. You can fi nd professional quality WordPress themes with non-trivial
price tags, or you can pay a hosting provider hundreds or even thousands of dollars a year
to run your MySQL, PHP, Apache, and WordPress software stack; both involve
commercialization of WordPress.

c01.indd 5c01.indd 5 12/6/12 1:11 AM12/6/12 1:11 AM

http://wordpress.com
http://codex.wordpress.org/Mailing_Lists

6 ❘ CHAPTER 1 FIRST POST

 ➤ If you customize the code to handle your own {content types, security policies, obscure
navigational requirements} you’ll have to publish those changes. You’re only required to
make the source code available for software that you distribute. If you choose to make those
changes inside your company, you don’t have to redistribute them. On the other hand, if
you’ve made some improvements to the WordPress core, the entire community would benefi t
from them. Getting more staid employers to understand the value of community contribution
and relax copyright and employee contribution rules is sometimes a bit challenging, but the
fact that you had a solid starting point is proof that other employers made precisely that set
of choices on behalf of the greater WordPress community.

 ➤ The GPL will “infect” content that you put into WordPress. Content — including graphic
elements of themes, posts, and pages managed by WordPress — is separated out from the
WordPress core. It’s managed by the software, but not a derivative of or part of the soft-
ware. Themes, however, are a derivative of the WordPress code and therefore also fall under
the GPL, requiring you to make the source code for the theme available. Note that you can
still charge for the theme if you want to make it commercially available. Again, the key
point here is that you make the source code available to anyone who uses the software. If
you’re going to charge for the use of a theme, you need to make the source code available
under the GPL as well, but as pointed out previously, users installing the theme effectively
get the source code.

More important than a WordPress history lesson and licensing examination are the issues of what
you can do with WordPress and why you’d want to enjoy its robustness. The next section looks at
WordPress as a full-fl edged content management system, rather than simply a blog editing tool.

CONTENT AND CONVERSATION

Multiple linear feet of shelves in bookstores are fi lled with volumes that will improve your writing
voice, literary style, blogging techniques, and other aspects of your content creation abilities. One of
the goals of this book is to defi ne the visual, stylistic, and context management mechanisms you can
build with WordPress to shape vibrant user communities around your content. That context
stimulates conversation with your readers. It’s not just about the words in each post, or even if
you’re an interesting writer. How will people fi nd you? How will you stand out in the crowd? How
do you put your own imprint on your site, and personalize it for whatever purpose: personal,
enterprise, community, or commercial?

WordPress as a Content Management System

Blogging systems have their roots in simple content management operations: Create a post, persist
it in stable storage such as a fi lesystem or database, and display the formatted output based on some
set of temporal or keyword criteria. As the richness and types of content presented in blog pages
expanded, and the requirements for sorting, searching, selecting, and presenting content grew to
include metadata and content taxonomies, the line between vanilla, single-user–targeted blogging
software and enterprise-grade content management systems blurred.

Content management systems (CMS) handle the creation, storage, retrieval, description or
annotation, and publication or display of a variety of content types. CMS also covers workfl ow

c01.indd 6c01.indd 6 12/6/12 1:11 AM12/6/12 1:11 AM

Content and Conversation ❘ 7

tasks, typically from an editorial or publishing perspective, but also including actions such as
approval and marking content for additional editing or review. The WordPress Dashboard provides
those elements of workfl ow management and editorial control. WordPress isn’t the only open source
content management system in widespread use today; the Drupal and Joomla projects are equally
popular choices. Drupal and Joomla start from the perspective of managing content repositories;
they handle a variety of content types, multiple authors in multiple roles, and delivering the
content to a consumer that requests it. WordPress is at its heart a blogging system, and the end focus
is on displaying content to a reader. Although areas of functional overlap exist, you can integrate
WordPress with other content management systems, a process covered in detail in Chapter 14.

WordPress has established itself as a bona fi de content management system through its design for
extensibility and the separation of content persistence from content display. Taking some liberties
with the Model-View-Controller design pattern, WordPress separates the MySQL persistence layer
as a data model, the theme-driven user interface and display functions, and the plugin architecture
that interposes functionality into the data to presentation fl ow. Most important, WordPress stores
content in raw form, as input by the user or an application posting through the WordPress APIs.
Content is not formatted, run through templates, or laid out until the page is rendered, yielding
immense power to the functions that generate the actual HTML. At the same time, the data model
used by WordPress uses a rich set of tables to manage categories (taxonomies), content tags (folk-
sonomies), author information, comments, and other pieces of cross-reference value. The WordPress
database schema that makes this possible is explored in Chapter 6.

Although that design gives WordPress incredible power and fl exibility as a content management
system, it also requires knowledge of how those data persistence and control fl ows are related (it
was a search for such a dissection of WordPress in functional terms that got us together to write this
book).

Creating Conversation

“Conversation is king; content is just something to talk about.”

 — Cory Doctorow

A robust CMS is measured by the utility of its content. Even the richest content types and most well-
managed processes are of low return if nobody actually consumes the outputs. It’s not suffi cient to
install blogging software, write a few posts, and hope the world shows up on your virtual doorstep;
you need to create what Tim O’Reilly calls an “architecture of participation.” Social networking,
advertising, feeds, and taking steps to ensure your site shows up in search engine results will drive
readers to your site; the design, branding, and graphic elements coupled with the quality of your
content will encourage them to take the steps toward active participation.

Look at the problem from the perspective of a reader: in a world of tens of millions of websites
(many of which have a “fi rst post” and not much else) how will you be found, heard, and echoed?
Your Twitter followers should want to read your site, and your WordPress site can update your
Twitter feed. Conversely, your Twitter updates may appear in your WordPress sidebar, marrying
the ultra-short content timeline to the more thoughtful one. If you’re active on Facebook, you can
import entries into a public fi gure page and Facebook readership will drive traffi c back to your

c01.indd 7c01.indd 7 12/6/12 1:11 AM12/6/12 1:11 AM

8 ❘ CHAPTER 1 FIRST POST

website. If you cover specifi c, detailed, or arcane areas in your writing, Google searches for those
terms should direct readers to you, where they’ll join the conversation. Chapter 11, “Content
Aggregation,” covers getting content into WordPress from social media and other content systems,
and Chapter 12, “Crafting a User Experience,” looks at how your WordPress content can be more
broadly distributed.

GETTING STARTED

Before any serious work on presentation, style, or content begins, you need a home for your website
(despite the previous discussion about WordPress and content management systems, you’ll refer to
your website and the actual WordPress installation that implements it interchangeably, mostly for
convenience and brevity). Factors affecting your choice include:

 ➤ Cost — Free hosting services limit your options as a developer, and frequently preclude
you from generating money from advertising services. More expensive offerings may include
better support, higher storage or bandwidth limits, or multiple database instances for
additional applications.

 ➤ Control — What tools are provided for you to manage your MySQL database, fi les com-
prising the WordPress installation, and other content types? If you want to be able to muck
around at the SQL level, or manage MySQL through a command-line interface, you should
ensure your hosting provider supports those interfaces.

 ➤ Complexity — You can install the Apache web server with a PHP interpreter, MySQL,
and the WordPress distribution yourself, but most hosting providers have wrapped up the
installation process so that some of the rough edges are hidden from view. If you expect
to need technical support on the underlying operating system platform, fi nd a provider
(including your own IT department) that provides that support in a reasonable time frame.

This section takes a quick look at some hosting options, walks you through the basics of a do-it-
yourself installation, and concludes with an overview of the ways in which WordPress and MySQL
choose to ignore each other when installation goes into the weeds.

Hosting Options

Three broad categories of WordPress hosting exist, each with trade-offs between administrative
complexity and depth of control. The easiest and most popular is to use wordpress.com, a free host-
ing service run by Automattic using the multi-site version of WordPress (originally WordPress MU).
You can install themes and plugins through the Dashboard but you can only enable or disable the
choices that come preinstalled. Further, you won’t have access to the underlying MySQL databases
and core code, or be able to integrate WordPress with other systems. You can redirect one of your
own URLs to wordpress.com, but if you want full control over everything from the code to the
URLs used, you’re probably looking at a paid option. The free route may be a reasonable fi rst step
for you, but here it is assumed that you’re going to want to perform surgery on your installation.

You’ll fi nd a starter list of for-fee hosting providers on www.wordpress.org, including the paid
option on wordpress.com. Most have the latest, or close to latest, releases of the WordPress core

c01.indd 8c01.indd 8 12/6/12 1:11 AM12/6/12 1:11 AM

http://www.wordpress.org
http://wordpress.com
http://wordpress.com
http://wordpress.com

Getting Started ❘ 9

available as a package to be installed in conjunction with MySQL and a web server. The third host-
ing option is to install everything on servers that you own and operate. If your servers live in a host-
ing facility but you enjoy root administrative access, that’s equivalent to a do-it-yourself installation.

WordPress requires a web server with PHP support, a URL rewriting facility, and an instance of
MySQL. Apache is the most popular option for front-ending WordPress because it provides PHP
interpretation through mod_php and URL rewriting in mod_rewrite. There is growing interest in
lighttpd (Lighty) as a replacement for Apache, although the URL rewriting functionality needs a bit
of hand-holding. Finally, you can use Microsoft’s IIS 7.0 as a web server with its URL_rewrite
module. The emphasis on URL rewriting stems from WordPress’s support for “pretty” permalinks
to blog entries, allowing you to create a URL tree organized by date, category, tag, or other metadata.
Those mnemonic or human-readable URLs are converted into MySQL database queries to extract
the right WordPress content based on titles or other keywords as part of the WordPress main loop,
which is covered in detail in Chapter 5. Your web server decides whether the URL should be parsed
by WordPress or if it refers to a specifi c HTML fi le based on what’s in the .htaccess fi le, and the
URL rewriting rules assure that its contents are interpreted properly. Technically, URL rewriting
isn’t required to install WordPress, but it’s good to have because it gives you tremendous fl exibility
in the presentation and naming conventions used for your content’s URLs. Permalink design and
practices are covered in more detail in Chapter 2, but keep the requirement in mind as you select
your WordPress substrate.

Up to this point, MySQL has been mentioned only in passing, but a brief review of MySQL
requirements rounds out the hosting prerequisite list. It’s worth establishing some terminology and
distinguishing between the MySQL software, database instances, and WordPress instances using
MySQL. When you install and confi gure MySQL, you have a full-fl edged relational database system
up and running. It doesn’t have to be confi gured on the same machine as your web server, and some
hosting providers will create horizontally scalable MySQL “farms” in parallel to their web server
front ends. An instance of MySQL running on a server can support multiple databases, each with a
unique name. When you install WordPress, you’ll need to know the name of the MySQL database
reserved for your content, although this information may be auto-generated and confi gured for you
if you’re using a provider that supports WordPress and MySQL as an integrated package. WordPress
creates a number of relational data tables in that named database for each website that you create.

Confusion can result from nomenclature and complexity. You (or your hosting provider) may run
multiple MySQL instances on multiple servers, and you’ll need to know where your database is
hosted. Because each instance of MySQL can run multiple databases, and each database contains
groups of tables, it’s possible to run multiple MySQL-based applications on the same hosting
platform, using one MySQL instance or even one MySQL database.

If you want to have multiple WordPress sites on the same server, you can share a single MySQL
database instance for all of them provided you confi gure WordPress to distinguish the MySQL
database table names within the MySQL database. It’s a simple confi guration option that is covered
in the next section, and it highlights the distinction between multiple sets of tables in a database and
multiple databases for distinct applications.

Once you’ve secured the necessary foundation, it’s time to get the code up and running. Even if
you’re using a hosting provider that installs MySQL and WordPress for you, it’s worth knowing how
the server-side components interact in case you need to track down a problem when you’re deep in
plugin development.

c01.indd 9c01.indd 9 12/6/12 1:11 AM12/6/12 1:11 AM

10 ❘ CHAPTER 1 FIRST POST

Do It Yourself Installation

The famous, fabled, fabulous fi ve-minute WordPress installation is a reality when everything is con-
fi gured and coordinated properly. This section walks you through the steps that are often hidden
from view when you use a provider with packaged installs, and highlights some of the common mis-
fi res between WordPress and MySQL instances.

The installation process is quite simple (assuming that your web server and MySQL server are
already running): download the WordPress package and install it in your web server’s directory tree,
and then navigate to your top-level URL and complete the confi guration. One (compound) sentence
describes it completely.

It’s possible and even advisable to install a fully functioning WordPress instance on your laptop or
development machine, particularly if you are going to be working on the core, developing plugins
or otherwise making changes that would create embarrassing failures during testing on a public
website. Mac OS X comes with an Apache web server (with PHP and URL rewriting); download
MySQL from www.mysql.com, or use a prepackaged confi guration such as MAMP (www.mamp.info,
which includes the phpMyAdmin tool), and you’ll have a self-contained development and deploy-
ment lab. For other platforms, XAMPP (www.apachefriends.org) has a neatly integrated platform
stack that runs on Windows, Mac OS and Linux foundations. Having everything under one hood is
a powerful option for examining failure modes, as you’ll see in the next two sections. More infor-
mation on working with WordPress locally is covered in Chapter 3.

Installing WordPress Files

If you download the WordPress code from wordpress.org, you’ll get a zip (or tarball) archive that
expands into a directory called wordpress. The fi rst part of a WordPress installation is to get the
code into your web server’s directory structure; ensuring you have it in the right place is a critical
step. Gloss over this part and you’ll fi nd your website ends up with a URL like http://example.com/
wordpress and you’ll either have to start over or e-mail ugly URLs to your friends and family. If
that’s what you want — to distinguish your WordPress site from other content on your website or to
isolate multiple sections — choosing the fi lesystem layout is equally important.

Pick the top-level directory where you want to install WordPress. Most commonly, this is the root
directory for your web server, and if you’re using a hosting provider it’s probably the subdirectory
called public_html in the fi le tree. If you are using a packaged install where there’s a menu asking
you for the target location, make sure you pick this top-level directory (and yes, you know that it
already exists, that’s the point!); if you’re copying fi les from your local machine to the web server
target using an FTP client, make sure you pick the right destination. The somewhat obvious move to
copy the zip fi le to the server and then unpack it will put everything into a wordpress subdirectory,
and if you want your WordPress site’s URL to be http://example.com rather than http://example
.com/wordpress, move the fi les up one directory level before proceeding. There is a confi guration
option to have your WordPress installation in a subdirectory to your top-level URL, so it’s not fatal
if you drop WordPress into a less-than-desirable fi lesystem geography. That is covered at the end of
this section.

Once the WordPress fi les are installed, your fi lesystem browser should show you something like
Figure 1-1, with an index.php and template wp-config-sample.php fi le. That’s the entirety of the
WordPress system, which runs effectively within the web server’s PHP interpreter.

c01.indd 10c01.indd 10 12/6/12 1:11 AM12/6/12 1:11 AM

http://www.mysql.com
http://www.mamp.info
http://www.apachefriends.org
http://example.com/wordpress
http://example.com/wordpress
http://example.com
http://example.com/wordpress
http://example.com/wordpress
http://wordpress.org

Getting Started ❘ 11

At this point, if you’re doing a manual installation, you’ll want to create your own wp-config.php
fi le by editing the sample provided and saving it in your top-level WordPress directory. As an
alternative, you can navigate to your website’s URL, and the WordPress code will notice there’s no
confi guration fi le and present you with dialog boxes like those in Figures 1-2 and 1-3 where you can
fi ll in the details. You’ll need the MySQL database name, database username, and some idea of the
WordPress database table prefi x (other than the default wp_). These lower-level details are the guts
of the next section on database confi guration. If you are using a hosting provider with packaged
installations, you probably won’t see this step because the WordPress fi les will be extracted and the
MySQL database information will be automatically inserted into a confi guration fi le, no end
user–serviceable parts inside.

FIGURE 1-1: A clean but unconfi gured WordPress installation

FIGURE 1-2: WordPress will create a new wp-confi g fi le if one does not exist.

c01.indd 11c01.indd 11 12/6/12 1:11 AM12/6/12 1:11 AM

12 ❘ CHAPTER 1 FIRST POST

What do you do if you already have HTML or other content at your target URL and you want to
add WordPress to an existing site? Disposition of existing fi les depends on your desired fi rst user
experience upon navigating to your URL. To use WordPress as a content management system as
described here, your best choice is to save existing content and convert it into new posts or pages,
effectively making your previous site color commentary and context for your WordPress-driven
site. Alternatively, you can install WordPress in a subdirectory, keep your existing index.html fi le,
and direct readers to your new content through a button or link on your extant home page. Don’t
leave this to chance; if you have an index.html fi le and then install WordPress, you’ll have an
index.php and an index.html fi le side by side and users will see one or the other depending upon
the Directory Index confi guration of your site’s web server. Actions on existing content should be
informed by how much traffi c that content is driving to your site: if your pages are responsible for
search engine traffi c, you probably don’t want to disrupt the existing URLs that have been cached
and should install WordPress in a subdirectory. If you feel strongly about making WordPress the
wrapper around the user experience, move the content and include URL rewriting or redirection for
pages that move into the WordPress world.

If you used a hosting provider’s packaged installation, or if you manually created a wp-config
.php fi le and then navigated to your top-level URL, WordPress should have completed creating the
database tables, created an administrative user for your WordPress, and set an initial password, as
shown in Figure 1-4. Make sure you change the username to something different than admin.

FIGURE 1-3: Database confi guration dialog box

c01.indd 12c01.indd 12 12/6/12 1:11 AM12/6/12 1:11 AM

Getting Started ❘ 13

Upon a successful installation, you should see a box like Figure 1-5 that indicates your fi ve minutes
of famed installation are done.

FIGURE 1-4: Complete website details and set up admin user

FIGURE 1-5: Administrative information at the conclusion of a clean install

c01.indd 13c01.indd 13 12/6/12 1:11 AM12/6/12 1:11 AM

14 ❘ CHAPTER 1 FIRST POST

The next section covers the MySQL-WordPress confi guration dance in more detail and is suitable
reading even if thinking about SQL gives you hives. If you’re up and running, you can skip the next
section and go right to the section, “Finishing Up.”

Database Confi guration

If your hosting provider spun up a MySQL database and created a user for you, check your resultant
wp-config.php fi le to gather this information. It is necessary for the MySQL probing covered in
this section, and it’s good to have in case you run into MySQL problems later on. There’s a user-
name and password combination included in that fi le, so treat it the way you’d treat other login
information. On the other hand, if you’re going deep on the do-it-yourself route, this section gives
you a sense of what’s likely to create confusion or consternation as you pull the pieces together.

In theory, MySQL setup for WordPress is trivial: make sure MySQL is up and running, create a
WordPress user in MySQL, and then have that user create a database to hold the WordPress tables.
You can use the MySQL command line or tools such as phpMyAdmin or Chive for these tasks, but
bear in mind that MySQL has its own set of users and permissions granted to those users, distinct
from those used by your (or your hosting provider’s) operating system. Once MySQL is installed, it
will create a default table of users and grants, adding a root user on Unix systems that is a MySQL
superuser, unrelated to the Unix root user. However, if you’re attempting to connect to your
MySQL instance as the MySQL root user, those connections can only be made from localhost — the
same machine on which MySQL is running. If you want to learn more about MySQL permissions,
the table governing grants of those permissions to users, and how MySQL users are managed,
refer to the “MySQL Reference Manual” (http://dev.mysql.com/doc/) and the sections on
securing the initial MySQL accounts.

No set naming conventions exist for WordPress users or databases; hosting providers will typically
append the name of the package or your account information to distinguish users that benefi t from
MySQL database co-tenancy. Again, it’s possible to have multiple databases, owned by the same
user or different MySQL users, running in a single MySQL database server instance. In the example
shown in Figure 1-3, wp_ is used as a prefi x for both usernames and database names, at least provid-
ing a hint to the database administrator that these belong to a WordPress installation.

What can go wrong between WordPress and MySQL? The following are the three primary root causes
of installation failure. Note that all of these conditions need to be fulfi lled at installation time; there
has to be some basic database structure to contain the admin user before you can log in as that admin.

 1. Web server can’t fi nd MySQL. Either you have the hostname for the MySQL server noted
incorrectly in the wp-config.php fi le, or the web server is looking for a local MySQL
instance and can’t open the socket connection to it. Here’s a simple example: when you
run WordPress locally on Mac OS, MySQL creates the socket /tmp/mysql.sock for local
connections, but the WordPress PHP code is going to look for /var/mysql/mysql.sock
through the PHP engine’s MySQL module. Simply symbolically link one to the other:

ln -s /tmp/mysql.sock /var/mysql/mysql.sock

The actual fi lesystem path to the local MySQL socket is a function of the database confi guration;
when it starts up, it creates the local socket. Where the PHP engine, and therefore any PHP-
based applications, looks for this socket is PHP confi guration dependent. If you want to fi gure
out exactly where the mismatch is, a bit of heavy-handed printf() style debugging helps.

c01.indd 14c01.indd 14 12/6/12 1:11 AM12/6/12 1:11 AM

http://dev.mysql.com/doc/

Getting Started ❘ 15

Edit wp-includes/wp-db.php, the set of functions that establish WordPress’s database
connection. If you’re seeing the “Error establishing a database connection” message during
installation, insert an echo(mysql_error()); statement where the error is detected to see
the details displayed along with the generic message, as shown in Figure 1-6:

if (!$this->dbh) {
echo(mysql_error());
 $this->bail(sprintf(/*WP_I18N_DB_CONN_ERROR*/"
 <h1>Error establishing a database connection</h1>

FIGURE 1-6: mysql_error() reporting a socket problem

The mysql_error() function is a PHP library function that spits out the error generated by
the last MySQL function called.

 2. WordPress fi nds MySQL but can’t log in. Most of the time, the MySQL username or pass-
word is wrong, particularly when you have to copy some arbitrary username generated by a
hosting provider. Double-check your username data, and verify that it is refl ected properly
in your wp-config.php fi le. You may also run into a password authentication issue when
using MySQL 4.1 or MySQL 5.0 with some web servers’ PHP implementations; they only
support the older MySQL 4.0 password hashing scheme. If this is the case, use MySQL’s
OLD_PASSWORD() function to hash your WordPress user’s password in the backward-com-
patible format; the magic SQL incantation (at the MySQL command-line prompt or within
the SQL window of MAMP) to address the following:

SET PASSWORD FOR user@host = OLD_PASSWORD('password');

In this instance, user@host is your WordPress database username and database hostname,
and password is the (clear text) password you provided in the confi guration fi le.

 3. WordPress connects to MySQL but can’t select the database. Just because the web server
can log in to the database server with your WordPress database user information doesn’t
mean that there’s necessarily a database available to that user. This is another scenario best

c01.indd 15c01.indd 15 12/6/12 1:11 AM12/6/12 1:11 AM

16 ❘ CHAPTER 1 FIRST POST

diagnosed with mysql_error(), by inserting it in wp-db.php where the selection error is
identifi ed:

function select($db) {
 if (!@mysql_select_db($db, $this->dbh)) {
 $this->ready = false;
echo(mysql_error());
 $this->bail(sprintf(/*WP_I18N_DB_SELECT_DB*/'
 ... <h1>Can’t select database</h1>
 ..

If, after inserting the mysql_error() statement as described earlier, your attempts to com-
plete installation result in an error box like that shown in Figure 1-7, your MySQL database
wasn’t created under the appropriate database user, or the database user doesn’t have privi-
leges to use it. Double-check what MySQL believes using the following command line:

% /usr/local/mysql/bin/mysql -u wp_user1 -p
Enter password:
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 174
Server version: 5.1.37 MySQL Community Server (GPL)
mysql> show databases;
+——————————+
| Database |
+——————————+
| information_schema |
| test |
+——————————+
2 rows in set (0.00 sec)

FIGURE 1-7: MySQL database selection error

Once you logged in as your designated MySQL database user, you didn’t see the MySQL
database — in this case, it was probably created by MySQL user root, and permissions to
access or modify it weren’t granted to the WordPress installation’s MySQL user. If you have

c01.indd 16c01.indd 16 12/6/12 1:11 AM12/6/12 1:11 AM

Finishing Up ❘ 17

MySQL root access, or suffi cient MySQL user privileges to create new databases within the
MySQL instance, it’s easy enough to create a database once logged in on the command line:

mysql> create database wp_halstern;
Query OK, 1 row affected (0.00 sec)

Again, it’s important to distinguish operating system users from MySQL users from
WordPress users. MySQL users are defi ned in the database and granted privileges to
create databases, muck with tables, and otherwise generate useful data. WordPress users
exist within the WordPress database tables created during install; they only have privilege,
context, and meaning once you’re logged in to WordPress.

Once you have a clean WordPress installation, you should see a collection of tables named according
to the table prefi x you set in wp-config.php; again, this is easy enough to verify using the MySQL
command line:

mysql> use wp_halstern; show tables;
Database changed
+—————————————+
| Tables_in_wp_halstern |
+—————————————+
| wp_hs_comments |
| wp_hs_links |
| wp_hs_options |
| wp_hs_postmeta |
| wp_hs_posts |
| wp_hs_term_relationships |
| wp_hs_term_taxonomy |
| wp_hs_terms |
| wp_hs_usermeta |
| wp_hs_users |
+—————————————+
10 rows in set (0.00 sec)

In this example, you set the database table prefi x to wp_hs_; if you later add another WordPress
installation using the same database user and instance, you can simply set a different prefi x and
have the two sites co-mingled in the same database table. You dig into the schema and uses of the
ten basic WordPress database tables in Chapter 6. For now, once you are happily connected to
MySQL, you’re ready for some fi nal clean-up and fi rst-time administration.

FINISHING UP

At this point, your MySQL database is up and running. There’s a home for your content, and your
web server is happily executing the WordPress core code. There are just a couple more things to
discuss.

First-Time Administration

Once you have completed the installation, proceed to log in with the credentials you set up in
Figure 1-4 and you’ll see the basic WordPress Dashboard captured in Figure 1-8.

c01.indd 17c01.indd 17 12/6/12 1:11 AM12/6/12 1:11 AM

18 ❘ CHAPTER 1 FIRST POST

If you’re not redirected to the Dashboard through the Log In button, or if you happen to visit your
website’s top-level URL fi rst, either click the Log In link on your website or explicitly go to the
wp-admin subdirectory (example.com/wp-admin) to be presented with a login dialog box. Logging
in to your website takes you to the WordPress Dashboard, which is both amazingly simple in its
power and rich in its complexity and exposed features.

What you do next with the Dashboard depends on how happy you are with the basic installation.
If, as in the preceding example, you ended up with an older version of WordPress, click the Update
button to do an in-place upgrade to the latest distribution. In addition to having a strong
self-installation feature, WordPress includes self-update functions (in wp-admin/includes/update
.php if you’re looking for them).

You may decide to change some basic confi guration options, such as the database name or the
MySQL database user, although you’ll only change the default of root@localhost if you have full
control over the web and database servers. The confi guration fi le also has entries for “security keys”
that are used to provide stronger security for browser cookies. Security keys are discussed in more
detail in Chapter 11. Editing your wp-config.php fi le affects the changes right away. Changing the
database table prefi x, for example, causes WordPress to instantiate a new set of tables and create
a clean-slate installation. Make those edits and then go back to your top-level URL and you’ll fi nd
yourself with new admin user information and logged in to a starter Dashboard, as in Figure 1-8.
Old tables aren’t removed from MySQL, so you’ll have to do manual cleanup.

At this point, if you want to set your URL to be different from the location in which you installed
WordPress, you can choose Settings and General from the Dashboard and change the URLs for

FIGURE 1-8: Dashboard view upon a fi rst-time login

c01.indd 18c01.indd 18 12/6/12 1:11 AM12/6/12 1:11 AM

http://example.com/wp-admin

Finishing Up ❘ 19

both your top-level address as well as the WordPress installation directory. If you dissociate your
site’s URL and the WordPress directory, make sure you move the index.php fi le to the desired
top-level URL, and then edit the last line to include the proper subdirectory path to WordPress.

Before creating your fi rst post, it’s also a good idea to establish a permalink structure so that
everything you write follows the naming conventions you’ve chosen to make it relatively easy for
readers to fi nd, share, and link to your content. As expected, it’s another option in the Settings
portion of the Dashboard; options for permalink naming and their impact on performance and
database schema are covered in more detail in the next chapter.

Whether it’s really been fi ve minutes, or a few hours of tracking down mismatches in hostnames,
usernames, and database confi gurations, you’re now ready to publish the fi rst post of your own
writing.

First Post

A successful WordPress installation already has a fi rst post and comment published, thus assuring
that all of the moving pieces are moving in unison, and giving your website some initial content.
When you’re ready to add your own fi rst words, either use the right-hand QuickPress panel in the
Dashboard to post an entry (you may need to dismiss the new website help fi rst), or go to Posts and
click Add New to be taken to the built-in WordPress editor. Figure 1-9 shows an entry in progress in
the QuickPress panel, followed by the updated Dashboard after it’s been successfully posted.

FIGURE 1-9: Publishing from the QuickPress panel

c01.indd 19c01.indd 19 12/6/12 1:11 AM12/6/12 1:11 AM

20 ❘ CHAPTER 1 FIRST POST

If your tastes run more old-school, you can always crank out content in your favorite text editor and
then copy it into the editing pane. Be careful with WYSYIWIG word processors such as Microsoft
Word or OpenOffi ce if you want to copy into the WordPress HTML composition window because
the HTML will be riddled with additional tag and style information. Finally, a variety of standalone
editors, such as Illumnix’s Ecto, publish to WordPress using the Atom Publishing Protocol or
XML-RPC. Options for enabling posts to be published remotely are, as you’d expect, in the
Dashboard’s Settings section under Writing options.

Click Publish for your own “Hello World” moment. Multiple subsystems created that editing pane,
saved the content in a database, generated and saved the referential metadata, and then emitted
nice-looking HTML. Most of the user-visible pieces are governed through the Dashboard and
certain functions will be covered in various chapters.

SUMMARY

This chapter covered how WordPress got to where it is today, with a brief history lesson and also
touching on its current popularity. Part of WordPress’s rise in the web realm is attributed to the
simplicity of the installation process. The next chapter dives into the core of WordPress so that you
can take advantage of its extensibility, friendly design, and function.

c01.indd 20c01.indd 20 12/6/12 1:11 AM12/6/12 1:11 AM

Code Overview

WHAT’S IN THIS CHAPTER?

 ➤ Downloading WordPress

 ➤ Confi guring wp-config.php and .htaccess

 ➤ Exploring the wp-content directories

 ➤ Enabling maintenance mode in WordPress

WordPress is a software package that comprises groups of source code fi les that perform
 specifi c tasks within the system. Understanding the code, including fi le and folder structure,
is essential to understanding how WordPress works as a whole.

After reading this chapter, you will be familiar with downloading and exploring the
WordPress fi lesystem. This chapter also discusses confi guring key WordPress fi les, including
the powerful wp-config.php and .htaccess fi les. It also covers some advanced confi guration
options available in WordPress.

DOWNLOADING

The fi rst step to installing WordPress on your own hosting account is to download the source
fi les required for WordPress to run. This section digs deeper into the core of WordPress.

Download Locations

You can download the latest stable release of WordPress directly from WordPress.org by
 visiting the download page located at http://wordpress.org/download/.

2

c02.indd 21c02.indd 21 12/6/12 1:12 AM12/6/12 1:12 AM

http://wordpress.org/download/
http://WordPress.org

22 ❘ CHAPTER 2 CODE OVERVIEW

You can also update WordPress directly from your current WordPress installation by visiting the
Updates WordPress section under the Dashboard ➪ Updates SubPanel. Click the Download button
to download the latest version of WordPress to your computer.

WordPress also features Subversion (SVN) access. Subversion is a free, open source version control
system. WordPress uses Subversion to manage fi les and directories and the changes made to them.
You can download the latest WordPress source code by checking out http://core.svn
.wordpress.org/trunk/.

The SVN trunk directory contains the bleeding edge version of WordPress that is actively being
developed. Typically, this version of WordPress contains bugs and is generally used for testing
 purposes. Running a production website using the trunk version of WordPress is not recommended.

SVN is the mechanism developers use to actively develop on the WordPress core software.
With SVN, you can create and submit patch fi les for inclusion into the WordPress core.
Chapter 16 covers this in detail.

Available Formats

The default format for the WordPress software download is in a compressed zip archive named
latest.zip. You can also download WordPress in a compressed tar archive named latest.tar.gz.
There is no difference between the fi les in the archive, only the compression method used.

You can download the zip and tar archives directly from these URLs:

 ➤ http://wordpress.org/latest.zip

 ➤ http://wordpress.org/latest.tar.gz

These download links never change. Each new version of WordPress is automatically compressed
and saved at this location when the version is tagged. When you save the archive to your computer,
you should rename the fi le to include the WordPress version number, such as wordpress-3.5.zip.
This will help you remember what version of WordPress you saved to your computer.

Release Archive

WordPress.org features a Release Archive for WordPress. The Release Archive features a list of
downloadable archives for every release of WordPress since version 0.71. The archive is located at
http://wordpress.org/download/release-archive/.

Remember that only the most current version of WordPress is actively maintained so these downloads
are more for reference than actual use. “Actively maintained” means that critical fi xes for security,
performance, or reliability problems are made to the active branch and not applied retroactively to
previous releases. If you need the fi x, you’ll need to upgrade your installed version of WordPress.

Another great use for these older versions of WordPress is to roll a website back to a previous ver-
sion. For example, if you update a very old version of WordPress to the latest stable version and run
into problems, you could easily download the old version that the website was originally running to
revert to. The Release Archive also features a download for every beta and release candidate version
of WordPress as well. This is great to see the overall growth of WordPress as a software platform.

c02.indd 22c02.indd 22 12/6/12 1:12 AM12/6/12 1:12 AM

http://core.svn.wordpress.org/trunk/
http://core.svn.wordpress.org/trunk/
http://wordpress.org/latest.zip
http://wordpress.org/latest.tar.gz
http://wordpress.org/download/release-archive/
http://WordPress.org

Directory and File Structure ❘ 23

The release archives are also useful if you need to update an old version of WordPress that has hacks
made to the core. Simply compare the website’s WordPress source code with the same version of
WordPress from the release archive and any differences, or core hacks, will be discovered.

DIRECTORY AND FILE STRUCTURE

The WordPress source code features many different PHP, JavaScript, and CSS code fi les. Each fi le
serves a specifi c purpose in WordPress. The beauty of open source software is that all code is pub-
licly available, which means you can easily explore the code to better understand how WordPress
functions. The best resource for learning WordPress is the WordPress software itself.

After extracting the WordPress download, you will
notice the set fi le structure for WordPress, as shown
in Figure 2-1.

WordPress comes with three directories by default:
wp-admin, wp-content, and wp-includes. Core
fi les are all fi les in the wp-admin and wp-includes
directories and the majority of the fi les in the root
WordPress directory. The wp-content directory
holds all of your custom fi les, including themes,
plugins, and media. This directory contains the
code that controls content manipulation and pre-
sentation in WordPress. WordPress HTML content,
such as pages and posts, is stored in the MySQL
database along with metadata such as tag and
category structures, both of which are covered in
detail in Chapter 6.

Modifying any of the core WordPress fi les can
result in an unstable website. An innocuous but
badly executed change to the Dashboard or login
functions, for example, will leave you with a WordPress installation that can’t be managed. Core
changes also make it very diffi cult to update WordPress because all changes made are overwritten
when the updated version of WordPress is installed. As discussed in the previous section, critical
fi xes to the WordPress core are only made in the current branch, so if you are forced to update
WordPress to pick up a security fi x, you’re going to have to re-integrate any core changes you’ve
made and hope they don’t confl ict with the changes you want. Maintaining the integrity and
stability of your WordPress installation over time is much simpler when you’re not changing fi les
in the core.

In general, the wp-admin, wp-includes, and root directory core WordPress fi les should never be
edited, but the next section covers some core root directory fi les that can be modifi ed as part of
advanced confi guration. In general, however, follow this rule that is revisited in Chapter 4: Don’t
hack the core!

FIGURE 2-1: Default WordPress fi le and folder

structure

c02.indd 23c02.indd 23 12/6/12 1:12 AM12/6/12 1:12 AM

24 ❘ CHAPTER 2 CODE OVERVIEW

WORDPRESS CONFIGURATION

WordPress features specifi c fi les that can be edited for different purposes. These fi les can alter how
WordPress functions. Always test changes in a development environment before publishing to a
 production server.

This section covers database connections, storing FTP info, enabling debugging tools, and more
using wp-config.php. It also covers the power of the .htaccess fi le, including increasing PHP
memory limits and max upload sizes, creating redirects, and setting access restrictions.

wp-confi g.php File

The most important fi le in any WordPress installation is the wp-config.php fi le. This fi le con-
tains all database connection settings, including the database name, username, and password to
access your MySQL database. This fi le also stores additional database and other advanced set-
tings. The wp-config.php fi le was originally named wp-config-sample.php. Renaming the fi le
to wp-config.php is one of the fi rst steps to installing WordPress.

The wp-config fi le is typically stored in the root directory of WordPress. Alternatively, you can
move the wp-config fi le out of the WordPress root directory and into the parent directory. So if
your WordPress directory is located here,

/public_html/my_website/wp-config.php

you can safely move the fi le to here:

/public_html/wp-config.php

WordPress looks for the wp-config fi le in the root directory fi rst, and if it can’t fi nd that fi le it
looks in the parent directory. This happens automatically so no settings need to be changed for this
to work.

NOTE Moving the wp-config.php out of the root WordPress directory is a good
security measure, making it nearly impossible to potentially access this fi le from
a web browser.

Some options in WordPress are stored as constants and these can be seen in the wp-config.php fi le.
The constraints all have the same format:

define('OPTION_NAME', 'value');

OPTION_NAME is the name of the option constant being set; value is the option value and can be
updated to whatever setting you would like to save for that option. When adding new options to the
wp-config.php fi le, it’s important the options are added above the line that reads:

/* That's all, stop editing! Happy blogging. */

c02.indd 24c02.indd 24 12/6/12 1:12 AM12/6/12 1:12 AM

WordPress Confi guration ❘ 25

If your WordPress installation is having problems connecting to your database, this is the fi rst place
to start troubleshooting. If you receive the error message “Error establishing a database connection,”
the fi rst thing to do is verify that the DB_NAME, DB_USER, and DB_PASSWORD options are correctly set
for your database server. Also verify that the DB_HOST name is set to the correct host for your server.
Typically, this is set to localhost, but some hosting companies confi gure WordPress packages with
web servers and MySQL servers on different machines, necessitating a host company–specifi c con-
fi guration option to locate the MySQL database. Contact your hosting tech support or consult their
online documentation for the correct host value to set here.

You can change the database character set (charset) by changing the DB_CHARSET option value. By
default, this is set to utf8 (Unicode UTF-8), which supports any language, and is almost always the
best option.

Since WordPress 2.2, the DB_COLLATE option has allowed designation of the database collation, that
is, sort order of the character set. (A character set is a collection of symbols that represents words in a
language. The collation determines the order to use when sorting the character set, usually alphabetical
order.) This option, by default, is blank and should typically stay that way. If you would like to change
the database collation, just add the appropriate value for your language. You should change this option
before installing WordPress. Altering this value after installation could cause problems in WordPress.

WordPress security can be strengthened by setting secret keys in your wp-config.php fi le. A secret
key is a hashing salt, which makes your site harder to hack by adding random elements (the salt) to
the password you set. These keys aren’t required for WordPress to function, but they add an extra
layer of security on your website.

To have secret keys auto-generated for you, visit the link to WordPress.org for secret key genera-
tion in your wp-config.php fi le (https://api.wordpress.org/secret-key/1.1/salt/), shown
in Figure 2-2. Alternatively you can just type a bunch of random characters in place of “put your
unique phrase here.” The goal is to use secret keys that are 100 percent random and unique.

FIGURE 2-2: Randomly generated secret keys

You can add or change these keys at any time; the only thing that will happen is all current
WordPress cookies will be invalidated and your users will be required to log in again.

Another security feature included in wp-config.php is the ability to defi ne the database table prefi x
for WordPress. By default this option value is set to wp_. You can change this value by setting the
$table_prefix variable value to any prefi x, like so:

$table_prefix = 'bwar_';

c02.indd 25c02.indd 25 12/6/12 1:12 AM12/6/12 1:12 AM

https://api.wordpress.org/secret-key/1.1/salt/
http://WordPress.org

26 ❘ CHAPTER 2 CODE OVERVIEW

If a hacker is able to exploit your website using an SQL injection attack, this will make it harder for
them to guess your table names and quite possibly keep them from doing SQL injection at all. Setting
the table prefi x to a unique value also makes it possible to run multiple WordPress installations in a
single database. If you want to change the table prefi x after you have installed WordPress, you can
use the WP Security Scan plugin (http://wordpress.org/extend/plugins/wp-security-scan/)
to do so. Make sure you make a good backup before doing this, however.

The wp-config fi le also contains the option for localizing your installation of WordPress.
WordPress has the built-in capability to be used in many different languages. Setting the WPLANG
option value sets the default language for WordPress to use. A corresponding MO (machine object)
fi le for the selected language must be installed to wp-content/languages for this option to work.
MO fi les are compressed PO (portable object) fi les, which contain translations for WordPress
messages and text strings in a specifi c language. The MO and PO fi les are components of the GNU
“gettext” subsystem that underlies the WordPress multilanguage capabilities. For a full list of avail-
able MO language fi les, visit the following resources:

 ➤ WordPress in Your Language Codex page — http://codex.wordpress.org/
WordPress_in_Your_Language

 ➤ WordPress Language File Repository — http://svn.automattic.com/wordpress-i18n/

Debugging errors in WordPress can be made easier using the WP_DEBUG option. Enabling WP_DEBUG
displays WordPress errors on the screen, rather than suppressing those errors with a white screen.
To enable WP_DEBUG, just set the option value to true:

define('WP_DEBUG', true);

New installations of WordPress will have this option defi ned in wp-config as false. If this option
is not defi ned, it defaults to false and error messages are not displayed. Remember to disable
or remove this option when you are done debugging because error messages might help hackers
fi nd vulnerabilities in your website. It’s best to always keep WP_DEBUG enabled when developing in
WordPress to address any warnings or errors that might be displayed.

Advanced wp-confi g Options

You can set additional advanced options in your wp-config fi le. These options are not in the
 wp-config fi le by default so you will need to manually add them to the fi le.

To set your WordPress address and blog address, use the following two options:

define('WP_SITEURL', 'http://example.com/wordpress');
define('WP_HOME', 'http://example.com/wordpress');

The WP_SITEURL option allows you to temporarily change the WordPress site URL. This does not
alter the database option value for siteurl, but instead temporarily changes the value. If this option
is removed, WordPress reverts back to using the siteurl database setting. The WP_HOME option
works the exact same way, letting you temporarily change the home value for WordPress. Both
 values should include the full URL including http://.

c02.indd 26c02.indd 26 12/6/12 1:12 AM12/6/12 1:12 AM

http://wordpress.org/extend/plugins/wp-security-scan/
http://codex.wordpress.org/WordPress_in_Your_Language
http://codex.wordpress.org/WordPress_in_Your_Language
http://svn.automattic.com/wordpress-i18n/
http://example.com/wordpress
http://example.com/wordpress

WordPress Confi guration ❘ 27

NOTE This is a useful technique if you are building a WordPress website under
a temporary development URL, such as new.example.com. You can simply
remove these two options when you go live and WordPress will load using the
production URL instead.

Version 2.6 introduced an option that allows you to move the wp-content directory. The two
required options are:

define('WP_CONTENT_DIR', $_SERVER['DOCUMENT_ROOT'] .
 '/wordpress/blog/wp-content');
define('WP_CONTENT_URL', 'http://domain.com/wordpress/blog/wp-content');

The WP_CONTENT_DIR option value is the full local path to your wp-content directory. The
WP_CONTENT_URL is the full URI of this directory. Optionally, you can set the path to your plugins
directory like so:

define('WP_PLUGIN_DIR', $_SERVER['DOCUMENT_ROOT'] . '/blog/wp-content/plugins');
define('WP_PLUGIN_URL', 'http://example/blog/wp-content/plugins');

WP_PLUGIN_DIR and WP_PLUGIN_URL are options used by plugin developers to determine
where your plugin folder resides. If a plugin developer is not using these constants, there is a very
good chance their plugin will break if you move your wp-content directory. Never move the
wp-content directory on your production server without fi rst testing in a development
environment.

WordPress saves post revisions for each saved edit made to a post or page. Edits are saved by click-
ing either the Save or Publish button, and also by the built-in auto-save feature of WordPress.
Imagine if each post you create has 10 revisions. If you had 100 posts, that would be 1,000 records
in your database. This can quickly increase the size of your database and may even slow down your
website because table records can take longer to fetch in larger databases. Luckily, WordPress has a
built-in post revisions option called WP_POST_REVISIONS. You can set this option to false to com-
pletely disable post revisions altogether, or you can specify a maximum number of revisions to keep
for each post or page. Following are examples of both scenarios:

define('WP_POST_REVISIONS', false);
define('WP_POST_REVISIONS', 5);

You can also confi gure the auto-save interval by setting the AUTOSAVE_INTERVAL option.
WordPress uses AJAX when editing a post to auto-save revisions. By default, this interval is
60 seconds. You can set the interval in seconds for auto-save in wp-config. Set auto-save to
5 minutes by using this code:

define('AUTOSAVE_INTERVAL', 300);

A great debugging option is SAVEQUERIES. Activating this option saves all database queries into a
global array that can be displayed on your page. This can help you debug query issues, and also to

c02.indd 27c02.indd 27 12/6/12 1:12 AM12/6/12 1:12 AM

http://domain.com/wordpress/blog/wp-content
http://example/blog/wp-content/plugins
http://new.example.com

28 ❘ CHAPTER 2 CODE OVERVIEW

see exactly what WordPress is executing on each page load. If you are working on a theme or plugin,
and can’t seem to get the right set of posts back, this debug option will show you exactly what
WordPress is asking for out of the database. Enable this option by setting the value to true:

define('SAVEQUERIES', true);

To display the query array in your theme, add the following code to any theme template fi le to view:

if (current_user_can('manage_options')) {
 global $wpdb;
 print_r($wpdb->queries);
}

The preceding code displays the saved query array only if the logged-in user has the ability to man-
age options, essentially locking it down so only site administrators will see the output. Themes and
template fi les are covered in Chapter 9, “Theme Development.”

You can also enable logging directly from your wp-config fi le. To enable logging, fi rst you need to
create a php_error.log fi le and upload it to your root WordPress directory. Then simply turn on
the log_errors PHP option and point to your logging fi le:

@ini_set('log_errors','On');
@ini_set('display_errors','Off');
@ini_set('error_log','/public_html/wordpress/php_error.log');

All errors will now be logged to this fi le. This will also log any errors produced by enabling the
WP_DEBUG option discussed earlier. In the preceding example display_errors is set to Off, which is
perfect for a production website because you don’t want error messages displayed. If you are debug-
ging and want to view errors in real time, just set that option to On. Remember the error_log value
is relative to the web server’s document root, not the WordPress root.

You can also set the memory limit WordPress is allowed to use with the WP_MEMORY_LIMIT option. If
your website hits the memory limit set for WordPress to run, you will see the error “Allowed memory
size of xxxxx bytes exhausted.” Increasing the memory limit fi xes this problem. The memory limit is
set by defi ning the megabytes needed:

define('WP_MEMORY_LIMIT', '32M');

Setting this option works only if your hosting company allows it. Some hosting companies will
not allow you to dynamically change the memory limit and will have this value set very low. This
problem is usually found on lower-cost hosting companies that maintain their price points by
packing more web server instances onto a single physical host, creating contention for memory
footprint.

This increases the memory only for WordPress and not other applications running on your server.
To increase the memory limit across all of your websites, set the php_value memory_limit variable
in your php.ini fi le. For example, when importing large amounts of content, say months or years
worth of blog posts, it’s likely you’ll hit this memory limit.

c02.indd 28c02.indd 28 12/6/12 1:12 AM12/6/12 1:12 AM

WordPress Confi guration ❘ 29

One amazing feature of WordPress is the built-in localizer. WordPress displays in English by default,
but can easily be set to display any language that has been translated. Setting the WPLANG option
triggers WordPress to load the specifi ed language fi les:

define ('WPLANG', 'en-GB');

The option value shown previously comprises the ISO-639 language code followed by the ISO-3166
country code. So en-GB would be English-Great Britain. This setting will reference your .mo and
.po fi les for language translation.

You can also defi ne the LANGDIR option. This option defi nes what directory will hold your language
.mo fi les. By default, WordPress looks in wp-content/languages for the .mo fi le. If you would like
to move this folder, just set the LANGDIR option like so:

define('LANGDIR', '/wp-content/bury/my/languages');

WordPress will now look in the new location for your .mo fi les.

CUSTOM_USER_TABLE and CUSTOM_USER_META_TABLE are also very powerful options. They are
useful if you want to have two or more individual WordPress installs use the same user accounts.
Remember to set this prior to installing WordPress.

define('CUSTOM_USER_TABLE', 'joined_users');
define('CUSTOM_USER_META_TABLE', 'joined_usermeta');

Setting these two options enables you to defi ne the name of the default WordPress user and user
meta table. Doing this means both websites share user information including usernames, passwords,
author bios, and so on. This is a great way to set up a new installation of WordPress but not lose
sync with your current user base.

If you would like your users to have different roles on each WordPress install, but still share user
accounts, don’t set the CUSTOM_USER_META_TABLE option. Everything stored in the user tables will stay
the same, but everything else will be blog-specifi c (that is, user level, fi rst and last name, and so on).

You can set multiple cookie options such as COOKIE_DOMAIN, COOKIEPATH, and SITECOOKIEPATH.
These options are typically used in a WordPress Multisite installation utilizing subdomains for
websites. This allows you to set the primary domain so cookies can be created and validated on all
subdomains in the network.

define('COOKIE_DOMAIN', '.domain.com');
define('COOKIEPATH', '/');
define('SITECOOKIEPATH', '/');

Typically, you won’t need to use or change this option, but if you run into issues with cookies, this is
the fi rst place to check.

Since the inclusion of the automatic installer functionality for plugins and themes, as well as the
automatic update process, you can set FTP settings directly in your wp-config fi le. This is only
needed if your host is not confi gured to support the automatic install process. This is easily detect-
able because each time you try to install a plugin or theme you are asked for your FTP information.

c02.indd 29c02.indd 29 12/6/12 1:12 AM12/6/12 1:12 AM

http://domain.com

30 ❘ CHAPTER 2 CODE OVERVIEW

To save your FTP information in WordPress, add the following options in your wp-config fi le:

define('FTP_USER', 'username');
define('FTP_PASS', 'password');
define('FTP_HOST', 'ftp.example.com:21');

Just enter your FTP username, password, and host with port and you’re all set! WordPress will no
longer ask for your FTP information when using the automatic installer.

You can set additional FTP/SSH options for various confi gurations:

// sets the filesystem method: "direct", "ssh", "ftpext", or "ftpsockets"
define('FS_METHOD', 'ftpext');
// absolute path to root installation directory
define('FTP_BASE', '/public_html/wordpress/');
// absolute path to wp-content directory
define('FTP_CONTENT_DIR', '/public_html/wordpress/wp-content/');
// absolute path to wp-plugins directory
define('FTP_PLUGIN_DIR ', '/ public_html /wordpress/wp-content/plugins/');
// absolute path to your SSH public key
define('FTP_PUBKEY', '/home/username/.ssh/id_rsa.pub');
// absolute path to your SSH private key
define('FTP_PRIVKEY', '/home/username/.ssh/id_rsa');
// secure FTP SSL-connection if supported by the hosting company
define('FTP_SSL', false);

You can also override default fi le permissions in WordPress using the FS_CHMOD_FILE and
FS_CHMOD_DIR options:

define('FS_CHMOD_FILE',0644);
define('FS_CHMOD_DIR',0755);

The numeric single digit values represent the User, Group, and World permissions set for fi les
and folders on your web server. To learn more about WordPress and fi le permissions visit
http://codex.wordpress.org/Changing_File_Permissions.

These settings can help with certain hosting companies that use restrictive permissions for all user fi les.
This will override the server settings and should allow WordPress updates and auto installations to work.

The WP_CACHE option is required for some caching plugins to work. Enabling this option will include
the fi le wp-content/advanced-cache.php. To enable this option use the following code:

define('WP_CACHE', true);

WordPress has numerous constant options that you can set. There is a PHP function to view all
constants currently set on your installation:

print_r(@get_defined_constants());

An advanced option is forcing SSL on login to your WordPress site. This requires users to log in via
the HTTPS access link and encrypts all data being transferred to and from your website. To activate
SSL on login, add the FORCE_SSL_LOGIN option like so:

c02.indd 30c02.indd 30 12/6/12 1:12 AM12/6/12 1:12 AM

http://codex.wordpress.org/Changing_File_Permissions
http://ftp.example.com

WordPress Confi guration ❘ 31

define('FORCE_SSL_LOGIN', true);

You can also force all admin pages to use SSL. This is activated with the FORCE_SSL_ADMIN option,
like so:

define('FORCE_SSL_ADMIN', true);

This forces all admin dashboard pages (/wp-admin) to be encrypted with SSL. Keep in mind that
activating this setting slows down your admin page load times, but all data passed to and from
WordPress will be encrypted using SSL. Also remember that your website must be confi gured to
work with SSL. The quick way to test is to visit your site using https, as in https://example.com.
If the page loads, SSL is set up on your server.

Forcing SSL on the admin side of WordPress is a great security enhancement. All data passed to and
from WordPress will be encrypted, preventing someone from potentially stealing your WordPress
login credentials.

Since version 2.9, WordPress has featured a trash bin. This trash bin contains any posts, pages,
attachments, and comments that have been deleted. This allows you to recover any content that
you might have accidently deleted in WordPress. By default, the trash bin is emptied every 30 days.
Emptying the trash bin will permanent delete any items in the trash. You can modify this interval by
setting the EMPTY_TRASH_DAYS option like so:

define('EMPTY_TRASH_DAYS', 7);

The trash will now automatically be emptied every 7 days. You can also disable the trash completely
by setting the option value to 0. The trash link will now be replaced with a Delete Permanently link.
Keep in mind that WordPress will not ask for a confi rmation when you click Delete Permanently.

There is also an option to disable WordPress cron. Cron is used to execute scheduled tasks in
WordPress. Some common schedule tasks include posting a scheduled post and checking for new
versions of WordPress, themes, and plugins. To disable WordPress cron add this option to your
wp-config fi le:

define('DISABLE_WP_CRON', true);

This section covered a lot of common options for wp-config. There are many more, less common,
options for wp-config available in WordPress. A great resource for learning about wp-config
options is the Codex: http://codex.wordpress.org/Editing_wp-config.php.

.htaccess

The .htaccess fi le is used primarily for creating pretty permalinks and keyword injected URLs
for your website. WordPress by default creates ugly query-string formed URLs, usually with an ID
present, such as http://example.com/?p=45. These URLs are completely functional but aren’t
very friendly to search engines and site visitors. By enabling pretty permalinks, WordPress creates
URLs based on site content, such as post and page titles, category and tag names, and dates for
archives.

c02.indd 31c02.indd 31 12/6/12 1:12 AM12/6/12 1:12 AM

https://example.com
http://codex.wordpress.org/Editing_wp-config.php
http://example.com/?p=45

32 ❘ CHAPTER 2 CODE OVERVIEW

Enabling Permalinks

To enable permalinks visit the Settings ➪ Permalinks SubPanel on your WordPress Dashboard, as
shown in Figure 2-3. Select any permalink structure other than Default and click the Save Changes link.

Upon saving your changes, WordPress tries to create your default .htaccess fi le. If your root
WordPress directory is writable by the server, the fi le is created automatically. If WordPress is
unable to create the .htaccess fi le, you will see instructions on how to manually create the fi le, as
shown in Figure 2-4.

Setting a permalink structure using the month and year like this,

/%year%/%monthnum%/%postname%/

creates a permalink like this:

http://example.com/2012/10/halloween-party/

Using permalinks offers many advantages, such as:

 ➤ Search Engine Optimization (SEO) — Keywords in your URL can give your website a big
SEO boost. Search engines will use these keywords in their algorithm for positioning in their
search results.

 ➤ Forward compatibility — Regardless of what platform your website uses (WordPress, Drupal,
Joomla!), having a solid permalink structure can be easily replicated should you ever migrate.

 ➤ Usability — Visitor-unfriendly ID URLs make it equally unpleasant to share a link with a
friend. It’s diffi cult to differentiate the content between your ID-driven URLs.

FIGURE 2-3: Enabling permalinks in WordPress

FIGURE 2-4: Manual info for

creating the .htaccess fi le

c02.indd 32c02.indd 32 12/6/12 1:12 AM12/6/12 1:12 AM

http://example.com/2012/10/halloween-party/

WordPress Confi guration ❘ 33

 ➤ Sharing — In this Internet era of social networking, sharing is a natural extension of your
online presence. Keywords in the URL would make fi nding your link extremely easy and
convey an immediate context for the content.

.htaccess Rewriting Rules

Usually a web server takes a URL that references a fi le in the server’s document fi lesystem, loads that
fi le, and processes the content in it to generate HTML sent back to the user’s browser. For WordPress
fi les such as wp-login.php, that’s exactly how the login screen is generated. When presented with
a pretty permalink such as example.com/2012/travel/haddonfield, the web server just needs to
load the main loop of WordPress so that the core code can parse the URL and turn it into a database
query that fi nds a post with the title Haddonfi eld in the category Travel. Unlike a static website where
you would have created a fi le with that name, WordPress stores its content in a database — only a
few fi les are loaded directly.

The “secret sauce” behind the WordPress permalink mechanism is summarized in three rewriting
rules added to the .htaccess fi le when you enable permalinks:

RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule . /index.php [L]

Quite simply, these rules check the URL used to access your site to see if it refers to an existing fi le
or directory in the fi lesystem hierarchy. The !-f and !-d notations are negations; .htaccess is
ensuring that the URL does not refer to any valid fi le or directory pathname. If the URL does, in
fact, match a valid fi le — for example, a WordPress administrative function such as wp-login
.php — then no rewriting is done and the web server tries loading that fi le (to execute the PHP code
contained within). If there’s no fi le or directory at the path specifi ed by the supplied URL, then the
incoming URL is rewritten to index.php, invoking the core of the WordPress system. You’ll dig into
the steps used to convert a URL string into a MySQL query in a bit more detail as a preface to the
discussion of the content display loop in Chapter 5.

NOTE The simple check for whether a fi le or directory exists can have unin-
tended side effects if you put non-WordPress web server content in the same
directory structure as the WordPress code. For example, consider a directory
of images as a peer directory of wp-content: example.com/wp-content and
example.com/images. You might choose to bypass the WordPress media library
because those images are managed by their own set of ingest processes. What
happens when a user forms a URL with a mistyped image name that points to
a nonexistent fi le? The .htaccess rewriting rule will fi re because there is no fi le
with that name, and the WordPress core will be started. A user expecting to see
an image will instead get the default WordPress site content when they should
have received a 404 error for a nonexistent URL target. If you are going to add
directories around your WordPress installation, either place WordPress in its

continues

c02.indd 33c02.indd 33 12/6/12 1:12 AM12/6/12 1:12 AM

http://example.com/2012/travel/haddonfield
http://example.com/wp-content
http://example.com/images

34 ❘ CHAPTER 2 CODE OVERVIEW

The .htaccess fi le can also manage URL redirects. If you change your About page from http://
example.com/about to http://example.com/about-me, anyone who visits your original URL will
hit a 404 page. A URL redirect will redirect from the old URL to the new URL so your visitors won’t
get lost. This also alerts search engines about the new URL so they can update their index.

Following is an example of a 301 permanent redirect to a static page:

redirect 301 /about http://example.com/about-me

WordPress does some additional rewriting and cleanup of URLs to improve search engine results, as
you’ll see in Chapter 5.

Confi guration Control Through .htaccess

The .htaccess fi le is very powerful and can control more than just URL structure. For instance,
you can control PHP confi guration options using the .htaccess fi le. To increase the memory
 allotted to PHP use this command:

php_value memory_limit 64M

This increases the memory limit in PHP to 64 MB. You can also increase the max fi le size upload
and post size:

php_value upload_max_filesize 20M
php_value post_max_size 20M

Now the maximum fi le size you can post from a form and upload is set to 20 MB. Most hosting
companies set these values to around 2 MB by default so these are settings that will be used often
for larger fi le uploads. Not all hosting companies will allow these values to be set in your .htaccess
fi le, and they could create an error on your website if that is the case.

own subdirectory (example.com/wordpress) or add a rewrite rule to .htaccess
that recognizes your added peer directories and immediately hands those URLs
off to the web server:

 RewriteRule ^images/(.*) images/$1 [L]

This rule effectively says, “Take any URL that starts with the component images,
and pass it off to the web server.” The [L] directive means “stop processing after
matching this rule,” and the rewrite itself simply echoes back what it was passed.
If you’re going to have a few directories sitting in parallel with the WordPress
installation, you’ll need one rewrite rule for each.

(continued)

c02.indd 34c02.indd 34 12/6/12 1:12 AM12/6/12 1:12 AM

http://example.com/about
http://example.com/about-me
http://example.com/about
http://example.com/about-me
http://example.com/wordpress

WordPress Confi guration ❘ 35

The .htaccess fi le can also be used for security purposes. Using .htaccess allows you to restrict
access to your website by IP address, essentially locking it down from anonymous visitors. To lock
down your website by IP addresses, add the following code to your .htaccess fi le:

AuthUserFile /dev/null
AuthGroupFile /dev/null
AuthName "Access Control"
AuthType Basic
order deny,allow
deny from all
#IP address to whitelist
allow from xxx.xxx.xxx.xxx

Replace xxx.xxx.xxx.xxx with any IP address that you want to grant access to your website. You
can have multiple allow from lines so add as many IP addresses as you need. This allows access to
your website only if you are using an IP address defi ned here.

A more widely used option is to lock down your wp-admin directory. This means that only IP
addresses you specify can access your admin dashboard URLs. This makes it much harder for any-
one else to try to hack your WordPress back end. To accomplish this, create a separate .htaccess
fi le in your wp-admin directory with the preceding code.

Remember that most ISPs assign client addresses dynamically so the IP address of the computer you
are using will change on occasion. If you get locked out, just update your .htaccess fi le with your
new IP address or delete the fi le altogether. This is not a good tip if you allow open registrations on
your website because you need to allow your users access to the wp-admin directory.

You can also allow wildcard IP addresses. For example, 123.123.123.* would allow access to any-
one who matches the fi rst three IP address octets, with the fi nal digit being a wildcard. You can also
allow a range of IP address. For example 123.123.123.110-230 would allow anyone with an IP
address between 123.123.123.110 and 123.123.123.230.

You can also enable error logging from the .htaccess fi le. The fi rst step is to create a php-errors
.log fi le in your WordPress root directory. Then add the following code to your .htaccess fi le to
enable error logging:

php_flag display_startup_errors off
php_flag display_errors off
php_flag html_errors off
php_flag log_errors on
php_value error_log /public_html/php-errors.log

This enables error logging but suppresses any error messages from displaying. Again this is a perfect
setup for a production environment because you don’t want errors publicly displayed.

The .maintenance File

WordPress has a built-in maintenance mode that can be enabled by the .maintenance fi le.
The.maintenance fi le is used by WordPress during the auto-update process. This prevents visitors

c02.indd 35c02.indd 35 12/6/12 1:12 AM12/6/12 1:12 AM

36 ❘ CHAPTER 2 CODE OVERVIEW

from seeing any error messages as WordPress core fi les are updated. To test this feature, simply cre-
ate a new .maintenance fi le and add the following line of code:

<?php $upgrading = time(); ?>

Add this fi le to your WordPress root directory and your website will instantly enter maintenance
mode. This locks down your website for all visitors and displays a generic maintenance message
“Briefl y unavailable for scheduled maintenance. Check back in a minute.” The time() function can
be replaced with any UNIX-formatted timestamp.

You can set a custom maintenance page by creating a maintenance.php fi le and placing it in your
wp-content directory. WordPress uses this fi le to display during any forced maintenance periods
that you set. This allows you to create a custom maintenance notice to your website visitors.

This fi le is also used by the WordPress automatic update process. A .maintenance fi le is created
right before WordPress installs the new core fi les during an update. This ensures there are never any
error messages for your visitors during this process.

WP-CONTENT USER PLAYGROUND

The wp-content directory stores just about every fi le for customizing WordPress. This directory
stores your plugins, themes, and additional fi les to extend WordPress in any way imaginable.

The wp-content directory has a single PHP fi le, index.php. The contents of this fi le are shown
here:

<?php
// Silence is golden.

So what’s the point of this fi le? Actually this is a very important fi le. The index.php fi le blocks any-
one from viewing a directory listing of your wp-contents folder. If the index.php fi le didn’t exist,
and your web server allowed directory listings, visiting http://example.com/wp-contents would
display all of the fi les and folders in that directory. This can help hackers gain access to key fi les that
might help exploit your website; for example if a vulnerability were discovered in a plugin, being
able to view the list of directories in the WordPress plugin directory would quickly and easily inform
an attacker if your site was a viable target.

If you are manually updating WordPress, make sure you avoid overwriting your wp-content
directory.

Plugins

Plugins are stored in the wp-content/plugins directory. A plugin can be a single fi le or multiple
fi les inside of a folder. Any fi les inside the /plugins directory are scanned by WordPress to
 determine if the fi le is a properly formatted WordPress plugin. If the fi le is determined to be a
 plugin, it appears under the Plugins ➪ Installed Plugins SubPanel on your admin dashboard ready
to be activated.

c02.indd 36c02.indd 36 12/6/12 1:12 AM12/6/12 1:12 AM

http://example.com/wp-contents

wp-content User Playground ❘ 37

NOTE Remember that to automatically deactivate a plugin, you can remove
it from your /plugins folder. If an active plugin’s fi les are missing, WordPress
deactivates the plugin before trying to render your website.

Your wp-content directory might also include a /mu-plugins directory. Must-use (mu) plugins
are plugins that are automatically enabled in WordPress. Any plugins that exist in this folder will
be executed just like a standard activated plugin. The major difference is mu-plugins cannot exist
in a subdirectory or they will be ignored. To learn more about mu-plugins visit http://codex
.wordpress.org/Must_Use_Plugins.

You’ll be revisiting plugins in Chapter 8, “Plugin Development.”

Themes

Themes are stored in the wp-content/themes directory. Each theme must exist in its own subdirec-
tory and must consist of the proper template fi les for WordPress to recognize it as a usable theme.
At a minimum, an index.php and a style.css fi le must exist in the theme directory, along with
proper tagging to display under the Appearance ➪ Themes SubPanel on your admin dashboard.

WordPress can store as many themes in this directory as your server allows. You can easily view a
preview of any theme, or activate a new theme, under the Appearance ➪ Themes SubPanel. You’ll
cover themes in much more detail in Chapter 9.

Uploads and Media Directory

WordPress stores uploaded media in the wp-content/uploads folder. This directory does not exist
in a default installation of WordPress. The /uploads directory is created the fi rst time you success-
fully upload a fi le to WordPress.

By default WordPress stores uploads in month- and year-based folders. So your uploaded image
would be stored like so:

/wp-content/uploads/2012/06/image.png

Before you can upload any images or fi les in WordPress, you need to set the /wp-content direc-
tory to be writable. When you upload your fi rst image, WordPress auto-creates the /uploads
directory and any needed subdirectories. After you have successfully uploaded your fi rst image,
reset the /wp-content permissions to not be writable, typically 755. Currently, there is no way to
import images uploaded via FTP into the WordPress Media Library. If making the uploads direc-
tory writeable is not an option, there are plugins available (such as NextGen Gallery, described in
detail in the Custom Directories section that follows) that include this functionality.

WordPress Multisite stores upload media in a different manner. Instead of one uploads directory,
Multisite creates a blogs.dir directory. Inside this folder are multiple subdirectories named with
an ID. This ID is the blog ID the folder is attached to. Every site in a Multisite network has a unique

c02.indd 37c02.indd 37 12/6/12 1:12 AM12/6/12 1:12 AM

http://codex.wordpress.org/Must_Use_Plugins
http://codex.wordpress.org/Must_Use_Plugins

38 ❘ CHAPTER 2 CODE OVERVIEW

blog ID. You’ll cover this in more detail in Chapter 10. For example, your fi rst WordPress Multisite
site upload directory would look like this:

/blogs.dir/1/files/

This helps keep individual site uploads separated and easier to maintain.

Upgrade Directory

The wp-content/upgrade directory is automatically created by WordPress when you use the auto-
matic update process. This folder is used by WordPress to store the new version of WordPress that is
downloaded from WordPress.org. The compressed WordPress download is extracted in this folder
prior to the update. This folder should remain untouched for automatic updates to process success-
fully. If this directory is deleted, WordPress re-creates it the next time you run the auto-updater.

Custom Directories

Some plugins that require a lot of custom fi les will store those fi les in a directory in your
wp-content folders.

The Super Cache plugin (http://wordpress.org/extend/plugins/wp-super-cache/) creates a /
wp-content/cache directory to store all of the cached pages created for your website. A cached page
is simply a fully generated page on your website saved as a static HTML fi le. Instead of generating the
page each time a user clicks one of your links, the cache plugin serves up the static HTML fi le to the
visitor. This dramatically decreases WordPress load times and increases performance because pages
aren’t generated on each view, but rather only when the cache is regenerated based on your settings.

The Super Cache plugin also adds two fi les to your wp-content directory: advanced-cache.php
and wp-cache-config.php. These two fi les are required for Super Cache to function correctly.
When Super Cache is activated, it tries to create these two fi les. If it fails, a notice appears alerting
you of this. The fi les exist in the Super Cache plugin directory and can be manually moved to the
wp-content directory.

The most popular image gallery plugin, NextGen Gallery (http://wordpress.org/extend/
plugins/nextgen-gallery/), creates a /wp-content/gallery directory to store all of the images
uploaded to your NextGen image galleries. Each gallery created is a subdirectory under /gallery.
This helps keep your gallery image fi les very organized and easy to work with.

The WP-DB Backup plugin (http://wordpress.org/extend/plugins/wp-db-backup/) creates a /
wp-content/backup-b158b folder (where b158b is a random string) to store local backups of your
database. When you select the Save to Server option, all database backup fi les will be stored in
this directory. It’s important to not delete your backups unless you are sure they are not needed
anymore.

c02.indd 38c02.indd 38 12/6/12 1:12 AM12/6/12 1:12 AM

http://wordpress.org/extend/plugins/wp-super-cache/
http://wordpress.org/extend/plugins/nextgen-gallery/
http://wordpress.org/extend/plugins/nextgen-gallery/
http://wordpress.org/extend/plugins/wp-db-backup/
http://WordPress.org

Summary ❘ 39

SUMMARY

In this chapter you covered downloading WordPress. You also covered confi guring key WordPress
core fi les, wp-config.php and .htaccess, along with more advanced confi gurations for each. You
also reviewed the wp-content directory and how WordPress interacts with custom directories.

With that structural and confi guration view of WordPress, it’s time to learn how to create a local
development environment so that you can begin customization and development without impacting
a public site.

c02.indd 39c02.indd 39 12/6/12 1:12 AM12/6/12 1:12 AM

c02.indd 40c02.indd 40 12/6/12 1:12 AM12/6/12 1:12 AM

Working with WordPress Locally

WHAT’S IN THIS CHAPTER?

 ➤ Developing locally

 ➤ Getting started with a local development environment

 ➤ Confi guring a local development environment — tips and tricks

 ➤ Moving your local project to production

Now that you know how to obtain WordPress as well as what the basic lay of the land looks
like, let’s take a look at how to get started doing something with WordPress, something beyond
simply using WordPress as a website engine. Any user can install WordPress and use it to power
a website, as you saw in Chapter 1, which is one of the reasons why WordPress has been so
successful.

As a developer, however, you need a full-featured but sandboxed place to experiment, try out
new ideas, and fi gure out what has failed, without taking down a production or public site. As
the fi rst step in building something, to take WordPress to the next step in your own projects,
let’s look at the benefi ts of setting up a local development environment on your workstation
or laptop. This chapter starts with a brief swing outside the realm of WordPress to talk about
 general software development.

BENEFITS OF WORKING LOCALLY

Developing locally is considered a best practice. In general, you do not want to be actively
developing on a live production website because you could have visitors accessing the site at
any time and development involves iterations of breaking code and making it work again.
This is not the experience you want to provide to your visitors.

3

c03.indd 41c03.indd 41 12/6/12 1:14 AM12/6/12 1:14 AM

42 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

What is “developing locally?” In short, it means you have a full WordPress installation to which you
can make changes, add new code, and fail with impunity. It’s a sandbox, and it’s the fi rst element in
a successful deployment cycle.

Typical Deployment Cycle

Before diving into the reasons to develop locally fi rst, you’ll explain the different phases of
deployment. Deployment involves taking your code from the base development versions that you
feel are now ready for the world through staging and testing to a production website. In general,
there are three levels. Some workfl ows will have more, but these three steps are the essentials:
development, staging, and production. This is a basic software development workfl ow and applies to
more than just WordPress development.

First is the development environment, where you do all of your day-to-day work. As you’ll see in
this chapter, this is typically your local workstation or laptop, but in some scenarios it might be
a development location on a remote server. While it is best practice to develop your solution on a
platform that is the same type of system as the production environment, this is not always practical.
For example, your production web servers are high-end server class hardware running Linux, but
because your developers need access to corporate resources such as Microsoft Exchange, they run
Windows workstations for development.

This is why the second tier is introduced, which is the staging or testing environment. After the
developer has tested his solution on his development environment, he prepares to deploy it on a
staging server. The intention of the staging server is to bridge the gap between the development
environment and the target production environment without the risk of breaking the live website.
As you will see later in this chapter, there are variances you have to consider when developing
cross-platform code — that is, code that can run on Windows, Mac OS X, or Linux. This staging
environment gives the developer an opportunity to make sure his code will run on a server that is
similar to the production server. For WordPress development, this staging environment could be a
secret test site on your production server.

Finally, if the solution behaves as expected on the staging server, it can then be deployed to the live
production server. The production server or servers are the ones that serve the website to the Internet.
Using this three-tier workfl ow, developers are able to capitalize on the benefi ts of local development.

Why So Much Process?

Now that you have a basic understanding of the workfl ow, you’ll circle back to why a developer
should take these extra steps on the path to code deployment. While multiple phases seem at odds
with a “get code working quickly” mantra, the benefi ts outweigh the overhead.

First, as explained earlier, developing locally allows the developer to test and try things without
breaking the live website. Truly, this can be one of the most important aspects of this system. Once
your website has grown beyond the hobbyist audience, you want to minimize downtime. Developers
should not be trying things on the live website.

The second benefi t is privacy. Developing locally means your project is only available on your local
workstation, or sometimes your local area network. You are in control of who is able to access it.

c03.indd 42c03.indd 42 12/6/12 1:14 AM12/6/12 1:14 AM

Tools for Component Administration ❘ 43

If you are developing on a public web server, however, while there are ways to restrict access, your
potential audience is global.

This privacy gives you the opportunity to try things and play around. Think of it as your own private
WordPress sandbox with no one watching. For example, you might want to try the Ninja Warrior
obstacle course or even the Wipeout obstacle course, but you do not want a global audience while
you try to fi gure it out. There is no shame in attempting something and failing, but when working on
a project, you probably don’t want it to be globally accessible while still in the development phase.
While in development, your project could have security issues that have not been addressed yet and
putting those on a production server puts the server at risk.

Developing locally can save time and is often one of the biggest boosts to productivity. When working
locally, you do not need a connection to the Internet to test your code. Your project is self-contained
on your workstation. This also means you do not have to push your fi les to a remote server to test
them. You simply need to save your edits and refresh your browser. The time waiting for FTP
connections can add up.

If you are developing a new theme, you can test your theme using different sets of content. For
example, you may be building a custom theme for a specifi c project with an initial set of content,
but you want to ensure that, in the future, new content added to the site is properly styled. Or you
want to release your theme to the WordPress repository. While developing your theme on your local
workstation, you can use different content than what is on the live site to make sure everything is
formatted how you expect. This is part of the privacy of developing locally. Just because the initial
website will have a certain content set for launch does not mean your local version must have the
exact same content. This concept is covered in greater detail later in this chapter.

Locally, you can run multiple instances of WordPress. Furthermore, each instance can be a different
version of WordPress. This allows you to track changes to the core WordPress and make sure your code
will continue to run on future revisions. For example, you can test your theme or plugin on one local site
that is running the current version of WordPress, but you can also have a second WordPress site on your
workstation that is running the beta version of the next release, or tracking the nightly development
release. This helps you keep on top of changes to the WordPress core that might affect your project.

There are many benefi ts and reasons to develop locally. In addition, for individual developers, there may
be other reasons besides the privacy, security, and fl exibility benefi ts outlined here. Every developer will
have to do his own cost benefi t analysis for each reason and determine if the risk or extra steps are worth
the effort. At the end of this chapter, you will touch on some of the ongoing challenges with developing
locally and moving your project through the development and deployment workfl ow.

It is remarkably easy to set up a local WordPress development environment, using freely available
tools that manage the major underlying components of the WordPress system: the web server with a
PHP interpreter and the MySQL database.

TOOLS FOR COMPONENT ADMINISTRATION

Think about the prerequisites for WordPress, and then make a shopping list of the components you
need for WordPress. WordPress is a web application. That means you need a web server. WordPress
runs on PHP, a programming language for the web. That means your web server must support PHP.

c03.indd 43c03.indd 43 12/6/12 1:14 AM12/6/12 1:14 AM

44 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

Apache is a good (and very popular) general-purpose web server that supports PHP, although there are
many others that will work as well, including Microsoft IIS or Nginx. With WordPress version 3.2,
the minimum version of PHP that is required is version 5.2.4. Ideally, you would like a web server that
supports URL rewriting to make your permalinks work. Apache has a module called mod_rewrite to
make this work.

WordPress also needs a database to store the content of the site. WordPress only supports MySQL
for the database and, as of version 3.2, the MySQL version must be 5.0 or greater. In addition, your
PHP must have the appropriate MySQL libraries to make the database connection. You will also
want a client to manage your database.

Getting Your Development Stack

This sounds like a confusing and daunting list. But while many of us think of WordPress as the
 platform that you build your projects on, WordPress is, in turn, built on a platform. Commonly called
the LAMP (Linux, Apache, MySQL, and PHP) stack, it has been the foundation for many Internet
projects, including Facebook. And it is also the same foundation needed for WordPress. This means
that the WordPress community is not the only one that has these requirements.

As previously mentioned, this foundation is commonly called LAMP where the L stands for
Linux. If you are running Linux as your workstation operating system, you can install the LAMP
stack using your Linux distribution’s package management system. For example, if you are on
a Debian or Debian derivative you could run apt-get install apache to install the Apache
web server. A common trick is to install PHPMyAdmin as the MySQL client, that is, run apt-
get install phpmyadmin. PHPMyAdmin is a web application that requires Apache, PHP, and
MySQL, and because it is the MySQL client, it will install the appropriate libraries to connect
PHP and MySQL.

More than likely, you are not running Linux as your desktop operating system. You can install
each component individually and connect all the moving parts for it to work. That would be the
hard way. Luckily for us, there are some industrious people who have put together several packages
that make installing and confi guring this LAMP foundation easy, and these packages exist for the
various operating systems.

If you are running Mac OS X, you can use the MAMP installer. We hope you can put together
that this stands for Macintosh, Apache, MySQL, and PHP. You can download MAMP from
http://www.mamp.info.

Download MAMP, unpack it, and install it as you would any other Mac application. Once you
drop it in your Applications folder, you can start MAMP and open your control panel. This is the
control panel that controls the whole MAMP foundation, including your settings. One thing that
we do not like about MAMP is that it does not use the default port for Apache. The standard for
web servers to answer and respond is port 80, and browsers know this, which is why you never see
an 80 in your browser’s address bar. MAMP, however, defaults to port 8888. That means that when
you try to access your local web server, you will have to browse to http://localhost:8888 with
your browser. Just keep that in mind as the examples in this book will be treated as though they’re
running on the standard port 80.

c03.indd 44c03.indd 44 12/6/12 1:14 AM12/6/12 1:14 AM

http://www.mamp.info
http://localhost:8888

Tools for Component Administration ❘ 45

If you are running a Windows workstation, you have a couple of options. Notably, there is WAMP
and XAMPP. WAMP is Windows-specifi c and available from http://wampserver.com. WAMP,
obviously, stands for Windows, Apache, MySQL, and PHP. XAMPP runs on Windows but is
also cross-platform and is available from http://www.apachefriends.org. The X in XAMPP
stands for cross-platform and the extra P is included because XAMPP includes PERL, another
programming language. They are both good options.

Download and install WAMP as you would any other Windows application. Once it is installed,
you will have a new Windows system tray icon for WAMPSERVER that functions as your
control panel.

Note that this foundation is actually several different applications working together in unison to
provide you with a web development platform that happens to power WordPress. These WAMP and
MAMP installers are purely automating the wiring of these packages together for a general-purpose
use. Each individual application also has individual confi guration fi les that you can adjust to meet
your needs. Some common confi guration changes are covered later in this chapter.

Adding WordPress to the Local Install

Now that you have a working foundation, you need to install WordPress. You will want to stop
and consider how you intend on using this local development environment. Do you need only one
installation of WordPress? If you want more than one, are you going to use subfolders or set up
individual websites using virtual hosts? Are you going to use WordPress Multisite functionality for
multiple sites? The next section discusses some of these options, but for now, take the simple route
and set up one WordPress site.

To install WordPress, you can use the same source code control method using git or subversion, as
shown in the Chapter 2. Or you can use the traditional method of downloading the installation fi les
from http://wordpress.org.

Either way, once you have the WordPress core fi les you will need to put them in your web server’s
document root. For MAMP, this is set up under the MAMP control panel ➪ Preferences ➪ Apache.
You can accept the default or set this document root to wherever you would like. Commonly, Mac
users put the document root in the Sites folder of their Mac.

The WAMP document root defaults to c:\wamp\www. You can quickly access this folder using the
www directory option from the WAMPSERVER start tray option.

Copy your WordPress core fi les to the appropriate document root folder on your workstation.

Now open a web browser and browse to http://localhost. Do not forget that if your local web
browser is not on the standard port, you may need to add that to the address bar. Also, if you copied
WordPress into a subfolder of the document root, you may need to add that suffi x to the URL — for
example, http://localhost/ddamstra/Documents/www.

If your web and database servers are confi gured correctly, WordPress will create its databases and
edit confi guration fi les, and you should see the fi rst page of the WordPress installation, as shown in
Figure 3-1.

c03.indd 45c03.indd 45 12/6/12 1:14 AM12/6/12 1:14 AM

http://www.apachefriends.org
http://wampserver.com
http://localhost
http://wordpress.org

46 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

As with any WordPress installation, you will need to have your database and database access
 credentials set up. Both WAMP and MAMP come with PHPMyAdmin to manage the MySQL.
Use the WAMP or MAMP control panel to access PHPMyAdmin and set these up.

Lastly, do the infamous 5-minute WordPress install, as covered in Chapter 1.

If you have problems with getting your local development environment working, seek assistance
through the appropriate support communities and documentation. While they are designed to be
simple installations of the various components, every workstation is different and managing the
confi guration of these assorted moving parts is outside the scope of this book, and only tangentially
WordPress-related.

CONFIGURATION DETAILS

In the previous section, you walked through how to set up a local development environment. While
that section didn’t include an in-depth discussion, the basic idea is there. This section is about
extending that environment and covers some tips to help you get the most out of working locally.
Again, some of these pointers are about the LAMP foundation itself.

Here you will dig into confi guration options in more detail. This section walks you through
managing the fi lesystem tree seen by the web server, enabling debug data, and creating virtual
server names.

Managing the Web Server Document Tree

In the previous section, you accepted the default document root for Apache. However, for various
reasons, that may not be the best spot for your workfl ow or backup systems.

For example, in your development shop with multiple web developers, you may remap your Apache
document root to c:\www. This way, everyone’s document roots are all identical and it’s a top-level
folder that is easily accessible. Conversely, on your personal laptop, you may remap your document
root to C:\Users\ddamstra\Documents\www because the Documents folder is backed up when
connected to your home local area network.

FIGURE 3-1: WordPress installation

c03.indd 46c03.indd 46 12/6/12 1:14 AM12/6/12 1:14 AM

Confi guration Details ❘ 47

Use caution when making changes to the confi guration. As mentioned many times, there are multiple
moving parts involved and throwing one part out of alignment can have signifi cant consequences.
MAMP allows you to change your document root through the control panel. With WAMP, you
edit the confi guration fi le for Apache. This fi le is called httpd.conf and can be found in your
WAMPSERVER control panel under the Apache fl yout.

Change the line that reads document root to indicate your chosen location, as shown in Figure 3-2.

FIGURE 3-2: Apache document root

You will also need to change the Directory directive to match, as shown in Figure 3-3.

FIGURE 3-3: Apache Directory directive

c03.indd 47c03.indd 47 12/6/12 1:14 AM12/6/12 1:14 AM

48 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

Enabling Debug Information

When developing locally, you want to address as many potential errors and warnings as possible.
At the very least, you need to be aware of them. For development, you should set your PHP error
condition as high as possible to show these errors to you so that you can attend to them.

As discussed in Chapter 13, this is the exact opposite of what you want to do on your production
server. On your production server, you want to hide all the errors from your visitors. On your local
workstation, you are the only visitor, so you want to see them all since the errors are what you are
working on.

Using the WAMP control panel, you will need to restart Apache (or all services) for this change to
take effect. If you previously had fi les in the old document root, you will need to move them to the
new document root for them to be accessible.

Take a moment to contemplate what you are publishing in your document root. You don’t want to
publish any private or confi dential data. Consider which source code control system you are going
to use. Is your source code control system also part of your deployment strategy? Make sure that if
you are using a public repository such as GitHub that you do not push your wp-config.php fi le and
expose your passwords. Likewise, if your development environment is accessible on your local area
network, ensure you aren’t checking in confi guration fi les with sensitive information. Some source
code control systems, notably subversion, store revisions in plain text in fi les in your project folder,
potentially exposing credentials. This has happened to us on more than one internal penetration test
exercise and the following is now part of your standard Apache confi guration. You can confi gure
your Apache to not serve these .svn directories by adding the lines shown in Figure 3-4 to your
httpd.conf fi le.

FIGURE 3-4: Apache block .svn fi les

c03.indd 48c03.indd 48 12/6/12 1:14 AM12/6/12 1:14 AM

Confi guration Details ❘ 49

Until PHP version 5.4, the strict warnings and notices have not been included in the E_ALL level.
By setting the error reporting directive as mentioned, you will ensure that you are seeing the most
error reporting possible, and coding to reduce these notices will ensure that you are providing
the most PHP interoperability. Again, you will need to restart Apache to make this setting take
effect.

As previously mentioned, when developing on one operating system and deploying on another, you
have to consider not all systems have the same PHP API. For example, the PHP $_SERVER[] has
values on Windows machines that are not on Linux machines. Windows is not case sensitive in the
fi lesystem, but Linux is. Developers have to remember that the target system may not be their
development system. This is why you want the staging server to match the production server, so
that discrepancies can be caught before being deployed.

When developing locally, enable WordPress debugging. Similar to the PHP error reporting, this
allows the developer to see and address WordPress issues. Likewise, this should always be disabled
on production websites.

Enable WordPress debugging by editing your wp-config.php fi le and setting WP_DEBUG to true, as
shown in Figure 3-6. Unlike the previous Apache and PHP settings, which were global to all sites on
your workstation, this setting is per WordPress installation.

You set your PHP error level in the php.ini fi le. With WAMP, you can access this fi le through
the WAMP control panel, under the PHP fl yout. Set your error reporting directive to be E_ALL and
E_STRICT, as shown in Figure 3-5.

FIGURE 3-5: PHP error level

c03.indd 49c03.indd 49 12/6/12 1:14 AM12/6/12 1:14 AM

50 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

Handling Local and Production Database

Out of the box, WordPress has confi guration for one database. When working locally, you want
your development site to connect to your local MySQL so you do not risk messing up the production
database. In other words, that is one of the reasons you are doing this.

A common method is to set the database host to be localhost and set your MySQL credentials and
table name locally to the same as the production site. This is bad for security.

Mark Jaquith offers an alternative solution that allows for both a production and a local workstation
set of database access credentials on his site at http://markjaquith.wordpress.com/2011/06/24/
wordpress-local-dev-tips/. Essentially, he changes the wp-config.php fi le to look for an
overriding set of credentials that exist on his development machine only. He then ignores this
wp-config-local.php fi le in his source code control so that each developer can have his or her
own controlled local credentials and so that this fi le never makes it to production.

Creating Virtual Local Server Names

Initially, you set up WordPress in the document root of your local Apache. If you wanted more
than one local website, you could set each website in its own folder. This works and you use it for
many development sites. However, you can also set up each web server to respond to a local “fake”
domain name. Sometimes, when moving to production, using this method makes the conversion
from development to production easier.

Here is how it works using some networking magic. Everyone is familiar with the common top-level
domain names, such as .com, .net, and .org, and there are, in fact, many more with even more on

FIGURE 3-6: WordPress debug

c03.indd 50c03.indd 50 12/6/12 1:14 AM12/6/12 1:14 AM

http://markjaquith.wordpress.com/2011/06/24/wordpress-local-dev-tips/
http://markjaquith.wordpress.com/2011/06/24/wordpress-local-dev-tips/

Confi guration Details ❘ 51

the horizon. These fully qualifi ed domain names work through the DNS system where web browsers
ask these Internet-accessible DNS servers for the IP address of the website domain you typed in.

However, your web browser uses the DNS resolver to check a local fi le fi rst to see if there is
 predefi ned mapping. This fi le is called the hosts fi le. You can use this fi le and matching Apache
 confi gurations to make your workstation access local sites with fake fully qualifi ed domain names.

There are a couple of approaches to this. Some developers set the domain name of the actual site they
are working on to be their local workstation instead, pre-empting DNS requests. That means that
until they revert these changes, they cannot access the live site, and all requests will go to the local
site. For example, instead of having requests for mirmillo.com go to the server’s publicly accessible
IP address, these requests are intercepted and are redirected to the localhost IP address, which is
always 127.0.0.1.

The other option is to set the development site with a fake name that is easy to replace in SQL
during the deployment phase. In this case, we set the local development site to be mirmillo.local,
which is an invalid top-level domain name (for now). This way, we can access mirmillo.com
through traditional DNS and still work on our local development version by accessing mirmillo
.local in our web browser. This is the example you are going to follow in this book.

First, you have to set up your Apache to support virtual hosts. The actual confi guration here is
going to vary depending on your Apache installation. Using WAMP, the fi rst step was to set up a
virtual host in Apache. This is done by editing the httpd-vhosts.conf fi le found in C:\wamp\bin\
apache\Apache2.2.11\conf\extra. The default example comes with two sample virtual hosts.
Change one of the existing examples to become your localhost virtual host. Then change the
second example to match the settings you need for your local installation, such as mirmillo.local,
as shown in Figure 3-7.

FIGURE 3-7: mirmillo.local virtual host

c03.indd 51c03.indd 51 12/6/12 1:14 AM12/6/12 1:14 AM

http://mirmillo.com
http://mirmillo.com

52 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

Next, edit your hosts fi le. On Mac OS X, this fi le is found in /private/etc/hosts and Linux
has this fi le at /etc/hosts. On Windows, this fi le is C:\Windows\System32\drivers\etc. In
short, this fi le is made up of IP address and domain name pairings. As shown in Figure 3-9, you
can add a new mapping for mirmillo.local.

Next, you have to direct Apache to include this fi le. This is done by editing your httpd.conf fi le as
you have done previously in this chapter. As shown in Figure 3-8, uncomment the line to include the
virtual host confi gurations settings.

FIGURE 3-8: Apache includes virtual host confi g.

FIGURE 3-9: Hosts fi le mapping for virtual host

c03.indd 52c03.indd 52 12/6/12 1:14 AM12/6/12 1:14 AM

Deploying Local Changes ❘ 53

Finally, restart Apache and browse to http://mirmillo.local to complete the WordPress
installation, as you did in Chapter 1.

Local Theme and Plugin Development

If you are developing a theme, one of the benefi ts of developing locally is that you do not have to use
the content that will be on the live site. In fact, if you are developing a theme that you plan to release
to the population at large, you should use a content fi ller to make sure you style the vast spectrum
of content. For example you can use the WordPress sample content available at http://codex
.wordpress.org/Theme_Unit_Test. There are several alternative sample content import fi les such
as the one provided by WPCandy at http://wpcandy.com/made/the-sample-post-collection,
but the WordPress Theme reviewers will use theirs to approve your theme to be in the repository.
You can review the entire Theme Repository checklist at http://codex.wordpress.org/Theme_
Development_Checklist, and this is covered in Chapter 9, “Theme Development.”

Say you are developing a theme and you want to test it with the sample content mentioned in
the previous paragraph, but you also need to target specifi c content for the actual site you are
developing the theme for. Here is a good use for WordPress Multisite. WordPress Multisite is
covered in depth in Chapter 10, including how to set it up. But once you have it set up locally,
WordPress Multisite allows you to leverage the same themes and plugins across multiple WordPress
sites in a WordPress network. We set this up so that one of our WordPress sites has the sample
content. Then we created a second site for the site-specifi c content. When you give this a try, you
should network-enable the theme you are developing and activate it on both sites. This allows you to
jump back and forth in your browser to two different WordPress content sets but only edit one set of
theme fi les.

Likewise, if you are developing a new plugin, test it in WordPress Multisite to make sure it works.
You can also set up several virtual hosts on your machine running different versions of WordPress,
both a few revisions back and also development releases to make sure your plugin will continue to
work with the next update. Although we all preach to users to keep WordPress current, the reality
is that some sites lag behind, either because of hosting restrictions, ignorance, or laziness. It’s
important to make sure your plugin continues to work if you want people to use it. Also see Chapter
8, “Plugin Development.”

Now that you have your new project working locally, and you have removed all the errors and
notices from WordPress and PHP, you are ready to push it to a live server. In the next section, you
will look at some of the challenges and tactics for pushing code live.

DEPLOYING LOCAL CHANGES

First, distinguish between the different types of objects you are deploying. There is code, which
could be plugin code, or theme and theme assets. There is content, which is the website subject
 matter from the posts and pages and is stored in the database. Finally, there is the confi guration,
which is also stored in the database.

Deploying the code is easy. Developers do this every day. One of the advantages of PHP and
WordPress is that you can generally drop code into the document root and it runs at the next

c03.indd 53c03.indd 53 12/6/12 1:14 AM12/6/12 1:14 AM

http://mirmillo.local
http://codex.wordpress.org/Theme_Unit_Test
http://codex.wordpress.org/Theme_Unit_Test
http://wpcandy.com/made/the-sample-post-collection
http://codex.wordpress.org/Theme_Development_Checklist
http://codex.wordpress.org/Theme_Development_Checklist

54 ❘ CHAPTER 3 WORKING WITH WORDPRESS LOCALLY

request. Deploying code is simple and you can use your FTP client to do it. But please use SFTP, if
possible, because it is a secure protocol, whereas FTP is not.

Deploying the content and the confi guration is more diffi cult. WordPress uses fully qualifi ed links
in all the content. So every internal HREF and menu item has the full domain name embedded.
Likewise, the confi guration of the site is also tied to the domain name that WordPress was installed
at. You can’t simply take a database dump and move it.

There is, however, an intermediary step to change the domain names in the database export before
importing it into the production site. Use caution here that you are not going to steamroll any
updated content on the live site with your content from the development site. How exactly you do
this in your situation is dependent on your exact needs, but overall, this process is very similar to a
situation in which you are moving your site from one domain to another. The process is extensively
documented in various websites, the WordPress codex at http://codex.wordpress.org/Moving_
WordPress, and many other tutorials. This is just one method.

In short, this is how the process works for us, assuming you want to move all content from your
development database to the live site.

You are going to remove all the fully qualifi ed links from the content on your development site. All
future content you add to the production site, once the content is moved, will be fully qualifi ed,
but this is a method to make all the URLs root relative and then they will work on both your
development site and the live site.

For this process you use the wp-DBManager plugin by Lester Chan. This plugin allows you to
make database backups and also perform SQL queries on the data. You could also use WordPress’s
built-in database export functionality and PHPMyAdmin to do the same.

Pretend you are moving from the local development site mirmillo.local to the live production
site of mirmillo.com. This is where using the “fake” domain name virtual host option mentioned
 previously comes in handy.

Using the plugin, make a backup of your
working test site. Download and save this
backup fi le in case things go awry.

Next, in the SQL page of the plugin, you will
run the queries shown in Figure 3-10 to update
the URLs in your site’s content. Essentially, you
are removing the domain name from the URLs
in the HTML code.

Now export your content from your
 development site. Content export is found
in your WordPress dashboard under
Tools ➪ Export. Download this fi le.
This is your movable content with root
relative links.

FIGURE 3-10: SQL queries to remove domain names

c03.indd 54c03.indd 54 12/6/12 1:14 AM12/6/12 1:14 AM

http://codex.wordpress.org/Moving_WordPress
http://codex.wordpress.org/Moving_WordPress
http://mirmillo.com

Summary ❘ 55

Import this content into your live site. The import functionality is found in your WordPress
Dashboard under Tools ➪ Import. Again, be cautious that you do not overwrite newer content or
content you want to keep.

Truly, it is not a diffi cult process; it is just one that requires some planning and coordination.
There are some developers who are working on tools to make this process easier. In particular,
we have been keeping an eye on RAMP by Alex King’s Crowd Favorite, available online at
http://crowdfavorite.com/wordpress/ramp/. While you haven’t tried it yet, it looks promising.
The challenge is always that, when using WordPress as a Content Management System, users can
and will log in to the production site and make changes — that’s the point. But in doing so, your
development content gets out of sync. Ultimately, the goal will be to have a way to synchronize
WordPress databases between live, staging, and development and be able to handle confl ict resolution.
There is no silver bullet here, but it seems to be a challenge that many developers are working on.

SUMMARY

This chapter reviewed some of the reasons and processes for a proper development workfl ow.
In addition, it covered how to enable a local WordPress development environment in your own
private sandbox. Finally, you examined a process to push a development site to a production server.
The next chapter digs into the core fi les of WordPress and reviews how WordPress works.

c03.indd 55c03.indd 55 12/6/12 1:14 AM12/6/12 1:14 AM

http://crowdfavorite.com/wordpress/ramp/

c03.indd 56c03.indd 56 12/6/12 1:14 AM12/6/12 1:14 AM

Tour of the Core

WHAT’S IN THIS CHAPTER?

 ➤ Exploring the WordPress core fi les

 ➤ Searching through core fi les as reference

 ➤ Working with the WordPress Codex

 ➤ Understanding inline documentation

To understand how to extend WordPress properly, you must fi rst learn how the core of
WordPress functions. This will help you learn what tools are available in the WordPress
core to make your life easier. WordPress handles most of the tedious coding and logic
problems for you.

The WordPress core is the best resource for learning how WordPress works. The beauty of
open source software is you have all of the code at your disposal. If you are ever unsure how
a certain aspect of WordPress functions, just start digging into the code! The answers are all
there; it’s just a matter of fi nding and understanding them.

WHAT’S IN THE CORE?

The WordPress core is powered by a set of fi les that are part of the original WordPress software
download. These are required “core” fi les that WordPress needs to function properly. The core
fi les are expected to change only when you upgrade WordPress to a newer version.

The core does not include your custom fi les for plugins, themes, database settings, the
.htaccess fi le, and so on. The core also does not include any media you have uploaded to
WordPress. Basically, any fi les added to WordPress after installation are considered outside
of the core.

4

c04.indd 57c04.indd 57 12/6/12 1:15 AM12/6/12 1:15 AM

58 ❘ CHAPTER 4 TOUR OF THE CORE

The WordPress core fi les are primarily PHP fi les, but also contain CSS, JavaScript, XML, HTML,
and image fi les. These fi les control everything about WordPress including how content pages are
generated to display, loading the confi gured theme and plugins, loading all options and settings, and
much more. In short, the core contains several major function types:

 ➤ Posts, pages, and custom content — Creating, storing, retrieving, and interacting with the
majority of your WordPress content. The discussion of the loop that controls content display
and ordering in Chapter 5 relies heavily on these functions.

 ➤ Metadata — Everything from tags and categories to user-created taxonomies. The data
models used are explored in Chapter 7.

 ➤ Themes — Supporting functions for WordPress themes. Theme development and its
 relationship to these functions are discussed in Chapter 9.

 ➤ Actions, fi lters, and plugins — Framework for extending WordPress, covered in more detail
in Chapter 8.

 ➤ Users and authors — Creating and managing access control to your site, and key to the
 security and enterprise use topics in Chapters 12 and 14.

 ➤ Feeds, formatting, and comments — These are discussed as needed throughout the book.

This chapter digs into these fi les as you explore the WordPress core fi les. Think of this chapter as
your guidebook to the “how” of exploring the WordPress core; it is a fi eld guide companion to the
WordPress Codex documentation for user-contributed discussion and explanation. It’s also impera-
tive to be comfortable browsing and searching the core to complement the functional introduction
provided here. An exhaustive list of every WordPress function is not included here, both because the
list changes and evolves as the WordPress core undergoes continuous development, and because
the goal here is to convey developer and deployer expertise and not to summarize the Codex.

WordPress comes packaged with two plugins: Akismet and Hello Dolly. These two plugins exist
in your plugins directory inside wp-content. Even though these two plugins are a part of the
WordPress core fi le package download, they are not considered core functionality because they must
be activated to function and can easily be removed.

WordPress also comes packaged with three core themes: Twenty Ten, Twenty Eleven, and Twenty
Twelve. Twenty Twelve is the default theme on a fresh installation of WordPress. As with the
included plugins, these theme fi les are not considered core functionality because they can easily be
replaced with any theme that you want to use on your website.

USING THE CORE AS A REFERENCE

To use the WordPress core as a reference, you need to understand what to expect in the core fi les. Most
WordPress core fi les contain documentation in the form of code comments. Typically, a code comment
is displayed in the header of the fi le and gives an overall summary of the core fi le you are viewing.

To see this fi rst-hand, open the wp-login.php fi le located in the root directory of WordPress. You’ll
notice the top of the fi le has a header comment describing the fi le’s function:

c04.indd 58c04.indd 58 12/6/12 1:15 AM12/6/12 1:15 AM

Using the Core as a Reference ❘ 59

/**
 * WordPress User Page
 *
 * Handles authentication, registering, resetting passwords, forgot password,
 * and other user handling.
 *
 * @package WordPress
 */

All core fi les, other than images, can be viewed using a text editor program. Depending on your
default program settings, you may need to open up your text editor fi rst and then open the fi le
rather than just opening up the fi le directly. It’s also helpful to use a text editor that has syntax
highlighting, meaning PHP syntax would be highlighted to help you read the code easier.

There is a full list of compatible text editors on the WordPress.org Codex at http://codex
.wordpress.org/Glossary#Text_editor.

Inline Documentation

Nearly all WordPress core fi les contain inline documentation in PHPDoc form. PHPDoc is a stan-
dardized method of describing a function’s usage in PHP comment form. This means each function
is explained in detail directly before the function in a comment block. The following is the defi ned
template for documenting a WordPress function:

/**
 * Short Description
 *
 * Long Description
 *
 * @package WordPress
 * @since version
 *
 * @param type $varname Description
 * @return type Description
 */

This is amazingly helpful in understanding how functions work. The comment includes a short and
long description. It also includes the version of WordPress it was added in. This helps distinguish
new functions added to WordPress when a new version is released.

Available parameters are also listed along with the parameter data type. A data type is the type
of data that is required for the parameter. For example, an ID parameter would likely use the
int (integer) data type. The fi nal piece of information is the return value. The return value data
type is also listed.

All new functions added to WordPress are documented using the preceding template. For more
information on inline documentation in WordPress, see this Codex article: http://codex.word
press.org/Inline_Documentation.

c04.indd 59c04.indd 59 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/Glossary#Text_editor
http://codex.wordpress.org/Glossary#Text_editor
http://codex.wordpress.org/Inline_Documentation
http://codex.wordpress.org/Inline_Documentation
http://WordPress.org

60 ❘ CHAPTER 4 TOUR OF THE CORE

Finding Functions

Looking up a function in the core is the quickest way to learn how a specifi c WordPress function
works. You can see exactly what parameters are allowed to be sent to the function, as well as what
the function actually does and what the return values are.

To start, make sure you have downloaded the latest version of WordPress locally to your computer.
You will search these fi les as a reference for WordPress. Open up any text editor you have that
can search fi les (TextPad for Windows and Textmate for Mac are recommended). When searching
for a function, you want to eliminate calls to that function from your search. Do this by includ-
ing the word “function” at the start of your search, as in function wp_head. Not everything in
WordPress is a function, but this is a good place to start. If you don’t fi nd any matches, remove
“function” from the beginning of your search. Also remember to set your text editor to search all
fi les (*.*), not just .txt fi les.

Let’s look at the is_super_admin() function. This function is used to check if a user is a super
admin in WordPress Multisite. You need to know exactly what values the function expects before you
can use it. Open your text editor and search all fi les in WordPress for function is_super_admin.
The search should produce one result in wp-includes/capabilities.php:

function is_super_admin($user_id = false) {

Right away, you notice one parameter that can be sent to this function: $user_id. Notice the inline
documentation listed directly above the function. In this case, the is_super_admin() documenta-
tion looks like this:

/**
 * Determine if user is a site admin.
 *
 * @since 3.0.0
 *
 * @param int $user_id (Optional) The ID of a user. Defaults to the current user.
 * @return bool True if the user is a site admin.
 */

This is an extremely valuable block of content. The comment has a short description about what the
function does, in this case “Determine if user is a site admin.” The comment also notes when
the function was added (since version 3.0.0). There is also information about the single parameter,
including the parameter type, what the parameter is responsible for, and the fact that the parameter is
optional in this case. The comment also details what the expected return values will be. In this case,
the function will return True if the user is a site admin and False if not.

This alone is enough information to understand how this function works, but let’s dig into the code
for a better understanding. The fi rst few lines look like this:

 if ($user_id)
 $user = new WP_User($user_id);
 else
 $user = wp_get_current_user();

c04.indd 60c04.indd 60 12/6/12 1:15 AM12/6/12 1:15 AM

Using the Core as a Reference ❘ 61

Based on the PHPDoc comment above the function, you know the $user_id parameter is optional,
so this code shows what happens if a $user_id parameter is not passed to the function. The preced-
ing if statement checks if the $user_id variable contains a value. If it does, the WordPress User
class, WP_User, is called to retrieve the user data for that user ID. If the $user_id variable is empty,
the wp_get_current_user() function is called to get the user data for the currently logged in user.

Next, the function checks that the $user data actually exists before proceeding and, if not, will
return false.

 if (! $user->exists())
 return false;

Now that you know the $user data exists, you need to check if that user is actually a super admin:

 if (is_multisite()) {
 $super_admins = get_super_admins();
 if (is_array($super_admins) && in_array($user->user_login,
$super_admins))
 return true;
 } else {
 if ($user->has_cap('delete_users'))
 return true;
 }

Let’s break down this if statement a bit:

if (is_multisite()) {

This if statement checks that Multisite is actually running in WordPress by calling the is_mul-
tisite() function. Super admins will only exist if the Multisite feature of WordPress has been
enabled.

Now that WordPress has determined Multisite is running, the function calls get_super_admins()
to retrieve an array of all super admins in WordPress using the following code:

$super_admins = get_super_admins();

The $super_admins variable is now an array of all super admin login usernames. The next line is
the most important line in this function. This is the code that actually checks that a user is a super
admin in WordPress:

$super_admins = get_super_admins();
if (is_array($super_admins) && in_array($user->user_login, $super_admins))
 return true;

Before working with an array, you always want to verify the variable is an actual array using the
is_array() PHP function. The second part of this line of code uses the in_array() PHP function
to check if the user’s login exists in the super admin array. If it exists, the user is a super admin and
the function returns true.

c04.indd 61c04.indd 61 12/6/12 1:15 AM12/6/12 1:15 AM

62 ❘ CHAPTER 4 TOUR OF THE CORE

If the is_multisite() check covered earlier returns false, the function will execute the following
else code:

} else {
 if ($user->has_cap('delete_users'))
 return true;
}

The preceding code checks if the user has the delete_users capability. By default, this capability
is assigned to regular administrator accounts in WordPress. If Multisite is disabled in WordPress,
but you are an administrator, this code will return true when calling the is_super_admin()
function.

The fi nal line of code in the function is:

return false;

This code basically says that if any of the checks in the is_super_admin() function fail, return
false. This is more of a safety measure to be certain a true or false value is always returned.

After viewing this example, it should be more apparent how useful the WordPress core code can be.
You learned exactly how this function works by exploring the source code. All the answers to your
questions exist within the core so it’s essential to have a good understanding of how to utilize the
core to your advantage.

Exploring the Core

The WordPress core has certain fi les that contain many of the most popular WordPress functions.
These functions are used for all WordPress APIs and can be used in any custom plugin or theme. The
following sections detail the WordPress core fi les that contain key pieces of code for working with
WordPress. All of the fi les listed in the section that follows are located in the /wp-includes directory
of WordPress.

Functions.php

The functions.php fi le contains the main WordPress API functions. These functions are used to
easily interact with WordPress using a standardized method. Plugins, themes, and the WordPress
core all use these functions:

 ➤ current_time — Retrieves the current time based on specifi ed type.

 ➤ force_ssl_login — Requires SSL (https) login to WordPress.

 ➤ wp_nonce_field — Displays a nonce hidden fi eld for forms. A nonce fi eld is used for
 verifi cation purposes when submitting and processing data in WordPress. This is a critical
step in securing your code.

 ➤ absint — Converts value to nonnegative integer.

c04.indd 62c04.indd 62 12/6/12 1:15 AM12/6/12 1:15 AM

Using the Core as a Reference ❘ 63

Option.php

The option.php fi le contains the main WordPress Options API functions. These functions are used
for the following:

 ➤ add_option, update_option, get_option — Functions to create, update, and display a
saved option.

 ➤ set_transient, get_transient, delete_transient — Functions to create, retrieve, and
delete transients in WordPress. A transient is an option with an expiration time. When the
expiration time is hit, the transient is automatically deleted in WordPress.

 ➤ add_site_option, update_site_option, get_site_option — Functions to create,
update, and display site options. If Multisite is enabled, function returns the network
option; if not, the standard site option is returned.

Formatting.php

The formatting.php fi le contains the WordPress API formatting functions. These functions format
the output in many different ways:

 ➤ esc_attr — Used to escape a string for HTML attributes.

 ➤ esc_html — Used to escape a string for HTML.

 ➤ esc_url — Used to check and clean a URL.

 ➤ sanitize_text_field — Sanitizes a string from user input or from the database.

 ➤ is_email — Verifi es that an e-mail is valid.

 ➤ capital_P_dangit — Famous fi lter that forces the P in WordPress to be capitalized when
displaying in content.

Pluggable.php

The pluggable functions fi le lets you override certain core functions of WordPress. WordPress loads
these functions if they are still undefi ned after all plugins have been loaded. Some of the more
 commonly used functions include:

 ➤ wp_mail — Sends e-mail from WordPress.

 ➤ get_userdata — Returns all user data from the specifi ed user ID.

 ➤ get_currentuserinfo — Returns user data for the currently logged-in user.

 ➤ wp_set_password — Updates a user’s password with a new encrypted one.

 ➤ wp_rand — Generates a random number.

 ➤ wp_logout — Logs out a user, destroying the user session.

 ➤ wp_redirect — Redirects to another page.

 ➤ get_avatar — Returns the user’s avatar.

c04.indd 63c04.indd 63 12/6/12 1:15 AM12/6/12 1:15 AM

64 ❘ CHAPTER 4 TOUR OF THE CORE

Plugin.php

The plugin.php fi le contains the WordPress Plugin API functions, including:

 ➤ add_filter — Hooks that the WordPress core launches to fi lter content before displaying
on the screen or saving in the database.

 ➤ add_action — Hooks that the WordPress core launches at specifi c points of execution.

 ➤ register_activation_hook — Hook called when a plugin is activated.

 ➤ register_deactivation_hook — Hook called when a plugin is deactivated.

 ➤ plugin_dir_url — Returns the fi lesystem directory path for the plugin.

 ➤ plugin_dir_path — Returns the URL for the plugin.

User.php

The user.php fi le contains the WordPress User API functions, including:

 ➤ get_users — Returns a list of users matching criteria provided.

 ➤ add_user_meta, get_user_meta, delete_user_meta — Used to create, retrieve, and delete
user metadata.

 ➤ username_exists — Checks if a username exists.

 ➤ email_exists — Checks if an e-mail address exists.

 ➤ wp_insert_user and wp_update_user — Create and update a user account.

Post.php

The post.php fi le contains the functions used in the post process of WordPress, including:

 ➤ wp_insert_post — Creates a new post.

 ➤ get_posts — Retrieves a list of the latest posts’ matching criteria.

 ➤ add_post_meta — Creates metadata (custom fi eld data) on a post.

 ➤ get_post_meta — Retrieves metadata (custom fi eld data) on a post.

 ➤ get_post_custom — Returns a multidimensional array with all metadata (custom fi eld)
entries for a post.

 ➤ set_post_thumbnail — Sets a featured image on a post.

 ➤ register_post_type — Registers a custom post type in WordPress.

The plugin registration functions add_filter() and add_hook() are key to extending how
WordPress processes content, and these functions let you extend the basic content data struc-
tures used by WordPress. We cover custom post types and their data management in detail in
Chapter 7.

c04.indd 64c04.indd 64 12/6/12 1:15 AM12/6/12 1:15 AM

Using the Core as a Reference ❘ 65

Taxonomy.php

The taxonomy.php fi le contains the functions used by the WordPress Taxonomy API. Taxonomies
are used to manage the hierarchical relationships of metadata such as categories and tags
(described in Chapter 6) and can also be extended, as you’ll explore in Chapter 7. Functions in
this fi le include:

 ➤ register_taxonomy — Registers a custom taxonomy in WordPress.

 ➤ get_taxonomies — Returns a list of registered taxonomies.

 ➤ wp_insert_term, wp_update_term — Insert or update a taxonomy term based on argu-
ments provided.

There are many more core functions that can be used when developing custom themes and plugins
for WordPress. Take a few minutes and explore the core fi les inside /wp-includes. This directory
contains most of the WordPress API core function fi les.

To learn more about any function listed here, open up the corresponding fi le and view the source
code. Remember that each function will have inline documentation explaining how to utilize the
function correctly. We cover the Plugin API functions in more detail in Chapter 8. The core func-
tions used by themes are covered in Chapter 9.

Deprecated Functions

When a new version of WordPress is being developed, certain functions may become deprecated. A
deprecated function means the function is not removed from WordPress, but it should not be used in
your plugins and themes going forward. Typically in such a case, a new function has been created to
replace the deprecated function. A function may be deprecated in WordPress for many different rea-
sons, but the most common is that the function needs a complete rewrite to better handle the feature
it adds to WordPress.

WordPress contains a fi le to store all functions that have been deprecated over the years. WordPress
is known for having superior backwards compatibility. This means that when a new version of
WordPress is released, a strong focus it put on backwards compatibility to verify new features and
functions will not break existing sites running WordPress, even if the features in use are considered
deprecated.

Let’s look at the inline documentation for the get_current_theme() deprecated function:

/**
 * Retrieve current theme name.
 *
 * @since 1.5.0
 * @deprecated 3.4.0
 * @deprecated Use (string) wp_get_theme()
 * @see wp_get_theme()
 *
 * @return string
 */

c04.indd 65c04.indd 65 12/6/12 1:15 AM12/6/12 1:15 AM

66 ❘ CHAPTER 4 TOUR OF THE CORE

You’ll notice a few additional comment lines for deprecated functions. The fi rst is the
@deprecated line stating in what version of WordPress the function was deprecated, in this
case v3.4. The second is @see which tells you what function should be used instead, in this case
wp_get_theme().

The deprecated.php fi le is a very important fi le to check when a new version of WordPress is
released. If a common function is deprecated, you should immediately stop using it and even
 consider updating your old code to use the replacement.

Generally speaking deprecated functions are usually not removed from WordPress core, but there is
no guarantee a deprecated function won’t be removed in a future release.

WORDPRESS CODEX AND RESOURCES

WordPress has many different online resources that are extremely useful when learning and working
with WordPress. These resources should be bookmarked for quick reference and are used by begin-
ners and experts alike.

What Is the Codex?

The WordPress Codex is an online wiki for WordPress documentation located on WordPress.org.
WordPress.org describes the Codex as an “encyclopedia of WordPress knowledge.” You can visit
the WordPress Codex by going to http://codex.wordpress.org or by clicking the Docs tab in the
header of WordPress.org.

The Codex is a wiki-based website, which means anyone can create, edit, and contribute to the
articles within the Codex. The Codex is jam-packed with useful knowledge covering all aspects of
WordPress. From, “Getting Started with WordPress,” to more advanced developer topics, the Codex
is an essential resource for anyone looking to learn more about WordPress.

The Codex is available in many different languages. To fi nd a Codex version translated in your
 language, visit the Multilingual Codex page at http://codex.wordpress.org/Multilingual_
Codex. You can also contribute to the Codex and help expand on any language or create your own
language if it is not listed.

Using the Codex

The Codex can be used in many different ways. The most common method is to search the Codex
using the search box in the header, or you can visit http://wordpress.org/search/ to easily
search through the Codex for appropriate articles matching your search criteria.

The WordPress.org search is powered by Google Custom Search, as shown in Figure 4-1. The search
results returned are from all of WordPress.org, not just the Codex, so it’s important to keep that
in mind. There is a lesser known Codex-only search located at http://codex.wordpress.org/
Special:Search.

c04.indd 66c04.indd 66 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org
http://codex.wordpress.org/Multilingual_Codex
http://codex.wordpress.org/Multilingual_Codex
http://wordpress.org/search/
http://codex.wordpress.org/Special:Search
http://codex.wordpress.org/Special:Search
http://WordPress.org
http://WordPress.org
http://WordPress.org
http://WordPress.org
http://WordPress.org

WordPress Codex and Resources ❘ 67

You can also navigate through the index of articles on the Codex homepage. These articles are
 organized by topic and generally ordered by level of diffi culty. There is also a topic toward the top
for the latest version of WordPress. The articles here cover new features, compatibility tests for
plugins and themes, installing, upgrading, and support for the new version.

An extensive glossary of terms is available for the Codex. This can help familiarize you with
 common words used throughout the Codex. You can view the offi cial Codex Glossary at
http://codex.wordpress.org/Glossary.

Another search method is to use the quick index. This index allows you to look up an article by
the fi rst letter of the article’s title. You can fi nd the quick index at http://codex.wordpress.org/
Codex:Quick_index.

A WordPress Lessons page is also featured in the Codex at http://codex.wordpress.org/
WordPress_Lessons. This page provides lessons on how to learn specifi c elements of
WordPress. The lessons are organized by topic and are a great place to start if you are unsure
what to read fi rst.

Function Reference

WordPress functions are described in the Codex with an individual Function Reference page for
each WordPress API function available. These pages explain in detail exactly how a WordPress

FIGURE 4-1: WordPress.org search

c04.indd 67c04.indd 67 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/Glossary
http://codex.wordpress.org/Codex:Quick_index
http://codex.wordpress.org/Codex:Quick_index
http://codex.wordpress.org/WordPress_Lessons
http://codex.wordpress.org/WordPress_Lessons
http://WordPress.org

68 ❘ CHAPTER 4 TOUR OF THE CORE

function works, as shown in Figure 4-2. Bookmark this page for a quick reference on WordPress
functions and their capabilities. The offi cial Function Reference is located at http://codex.word
press.org/Function_Reference.

FIGURE 4-2: Function reference for get_userdata

Think of the Function Reference as an online and expanded version of a function’s inline documen-
tation. The reference has a description explaining how the function works and how it is used. The
individual parameters are listed along with data types and a description of each.

The most useful section of the Function Reference is the examples toward the bottom. The
examples make it very easy to see exactly how to use the function. The get_userdata example is
shown here:

<?php $user_info = get_userdata(1);
 echo 'Username: ' . $user_info->user_login . "\n";
 echo 'User level: ' . $user_info->user_level . "\n";
 echo 'User ID: ' . $user_info->ID . "\n";
?>

This example shows how to load specifi c user data for user ID 1. The example output is as follows:

Username: michael_myers
User Level: 10
User ID: 1

This is a simple example, but this, along with the additional reference information, can help you eas-
ily learn a new function and how to use it properly in your code.

c04.indd 68c04.indd 68 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/Function_Reference
http://codex.wordpress.org/Function_Reference

WordPress Codex and Resources ❘ 69

The fi nal Function Reference topic lists related functions. This can help you identify a similar function
that may accomplish that task you are working on. For example, the wp_insert_post() function lists
wp_update_post() and wp_delete_post() as related functions.

The majority of the WordPress API functions are well documented, but not all functions have a
Function Reference page in the Codex. Any function displayed in red on the Function Reference
homepage currently has no documentation. This is an ongoing community project so expect all
functions to be fully documented in the Codex eventually.

NOTE Contributing to the Codex is a great way to get involved in WordPress.
You don’t need to be an advanced developer to contribute code examples,
descriptions, and additional information about various features and functions in
WordPress.

WordPress APIs

WordPress features many different APIs that help interact with WordPress. Think of the APIs as
gateways that let you add code or retrieve external content within WordPress without violating the
“don’t the hack core” maxim: most APIs insert references to non-core code that will be added to the
wp-content directory by registering its entry points with WordPress. Each API is documented in the
Codex along with functions used in the API. An API is a set of predefi ned functions available for use
in themes and plugins. The following is a list of the most common WordPress APIs:

 ➤ Plugin API — Used for custom plugin development. The Codex features an extensive Plugin
API documentation page. There is an introduction to Hooks, Actions, and Filters, which are
the primary ways to interact with WordPress from a custom-built plugin. The Plugin API
page links to the Function Reference pages for available API functions, which are located in
/wp-includes/plugins.php.

http://codex.wordpress.org/Plugin_API

 ➤ Widgets API — Used to create and maintain widgets in your plugin. The widget will
 automatically appear under the Appearance ➪ Widgets SubPanel and can be used on any
defi ned sidebar on your theme.

http://codex.wordpress.org/Widgets_API

 ➤ Shortcode API — Used for adding shortcodes in your plugin. A shortcode is a macro
code added to a post. This allows a plugin to grab that shortcode and execute specifi c
commands and display elements in place of it in your post. Shortcodes can also accept
parameters to alter the output.

An example core WordPress shortcode is [gallery]. Adding [gallery] to your post auto-
matically displays all images uploaded to that post in a gallery style. When editing a post,
you will see the [gallery] shortcode, but viewing it on the public side of your website
displays the actual gallery of images.

c04.indd 69c04.indd 69 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/Plugin_API
http://codex.wordpress.org/Widgets_API

70 ❘ CHAPTER 4 TOUR OF THE CORE

http://codex.wordpress.org/Shortcode_API

 ➤ HTTP API — Used for sending an HTTP request from WordPress. This API is a standard-
ized method to grab the content of an external URL. Basically, it takes the provided URL
and tests a series of PHP methods for sending the request. Depending on the hosting envi-
ronment, WordPress uses the fi rst method it deems to be confi gured correctly to make the
HTTP request.

The current HTTP API PHP methods tested are cURL, Streams, and FSockopen. The
methods are also checked exactly in that order. You can use the Core Control plugin
(http://wordpress.org/extend/plugins/Core-control/) to specifi cally choose which
method is used for all HTTP requests.

Using the HTTP API, you could easily interact with the Google Maps API to dynamically
generate maps and plots. The HTTP API can also easily interact with the Twitter API,
allowing you to post/read tweets directly from WordPress.

http://codex.wordpress.org/HTTP_API

 ➤ Settings API — Used for creating a settings page. This API is used for creating and manag-
ing custom options for your plugins and themes. The main advantage of using the Settings
API is security. The API sanitizes all of the setting data saved by the user. This means no
more worrying about nonces, data validation, and cross-site scripting (XSS) attacks when
saving setting data. This is much easier than the old method of data validation, which you
had to use each time you needed to save settings in a plugin.

http://codex.wordpress.org/Settings_API

 ➤ Options API — Used for storing option data in the WordPress database. The Options API
provides an easy way to create, update, retrieve, and delete option values.

http://codex.wordpress.org/Options_API

 ➤ Dashboard Widgets API — Used for creating admin dashboard widgets. Widgets added
from the API automatically contain all jQuery features that the core admin dashboard wid-
gets have, including drag/drop, minimize, and hiding via screen options.

http://codex.wordpress.org/Dashboard_Widgets_API

 ➤ Rewrite API — Used for creating custom rewrite rules. This API allows you to create custom
rewrite rules just as you would in your .htaccess fi le. You can also create custom permalink
structure tags (that is, %postname%), add static endpoints (that is, /my-page/), and even add
additional feed links. The Rewrite API functions are located in /wp-includes/rewrite.php
at http://codex.wordpress.org/Rewrite_API.

Remember that all WordPress APIs can be used in custom plugin and theme development. This
is the primary method of extending WordPress with additional features and functionality. Utilizing
the preceding APIs creates an easy and standardized way of interacting with WordPress.

c04.indd 70c04.indd 70 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/Shortcode_API
http://wordpress.org/extend/plugins/Core-control/
http://codex.wordpress.org/HTTP_API
http://codex.wordpress.org/Settings_API
http://codex.wordpress.org/Options_API
http://codex.wordpress.org/Dashboard_Widgets_API
http://codex.wordpress.org/Rewrite_API

Don’t Hack the Core! ❘ 71

For more information on all WordPress APIs visit the Codex page at http://codex.wordpress
.org/WordPress_API's.

Codex Controversy

As with any wiki, there will always be controversy over the accuracy of the articles in the Codex.
One problem that has plagued the Codex is the freshness of the articles. WordPress is being devel-
oped at a decent pace and thus the Codex needs to keep up that pace in order to be accurate.
Unfortunately, that doesn’t always happen, and some material is outdated. The WordPress Codex
is a community project, so you can easily create an account and start helping out! Contributing to
WordPress is covered in Chapter 16.

Another problem that exists within the Codex is the organization of the content. Currently, there
is so much information in the Codex that it can be hard and confusing to fi nd the answers you are
looking for. Again, one of the motivations for this introduction to the WordPress core is to provide
you with a map to help narrow the scope of your searches and to introduce related functional topics.

DON’T HACK THE CORE!

Whereas exploring the WordPress core and using it as a reference is highly encouraged, hacking the
core is not. Hacking the core means making any changes to the core fi les of WordPress. A change
could be as simple as one line of code, but a hack is a hack and doing so could cause major problems
down the road.

Why Not?

Hacking the WordPress core can make it very diffi cult to update to the latest version of
WordPress. Keeping WordPress current is an important step in overall website security. If
any security vulnerability is discovered, a patch is typically released very quickly. If you can’t
update because you have modifi ed core fi les, you are opening up your website to these security
 vulnerabilities, and you increase the likelihood that your website will be hacked.

Hacking the core can also lead to an unstable website because many parts of WordPress rely on
other parts to function as expected. If you make changes to those parts, it could break something
completely unrelated to what you have changed.

Security is another reason why you shouldn’t hack the core. WordPress core is viewed and scru-
tinized by security experts all over the world. By hacking the core, you are relying on your own
expertise to make your hacks secure. If you don’t understand the many different ways a hacker can
exploit your code, you might end up creating a security vulnerability within the core of WordPress.

The fi nal reason why you should never hack the core is compassion: that is, compassion toward the
developer who comes after you to maintain the website. Most websites will change developers over
the years so there is no guarantee you will be working on a particular website fi ve years from now.
Imagine the developer that follows you trying to determine what core fi les were hacked to make the
website function. This can be a nightmare for any developer and it puts the website owner in a bad
position because most developers will refuse to work on a hacked version of WordPress. If you hack

c04.indd 71c04.indd 71 12/6/12 1:15 AM12/6/12 1:15 AM

http://codex.wordpress.org/WordPress_API's
http://codex.wordpress.org/WordPress_API's

72 ❘ CHAPTER 4 TOUR OF THE CORE

the core, you are building dependencies that will either be misunderstood or hidden, and when the
WordPress core is upgraded for this site, the hacked core will break in silent, evil, or loud ways.

Alternatives to Hacking the Core

Any feature or functionality that does not exist in WordPress can be added with a plugin.
Sometimes a core hack may be the easy answer, but in the long run, it will make your life harder.
(We have yet to come across a feature we needed that we couldn’t incorporate with a plugin.)
WordPress is extremely fl exible, which is one of its major strengths, and therefore the core should
never be hacked. Don’t hack the core!

If you are fascinated by the WordPress core and its intricacies, you should join the WordPress
Developer Community and get involved fi xing bugs and contributing to the core build of WordPress.
This is covered in detail in Chapter 16.

SUMMARY

In this chapter you covered a tour of the WordPress core software. You explored what’s in the core,
how to use the core as a reference when developing for WordPress, and how to determine what
 functions are deprecated each release. You also learned about the WordPress Codex and available
APIs in WordPress.

Now that you understand the core of WordPress, it’s time to learn how to utilize the WordPress
Loop to customize the display of content.

c04.indd 72c04.indd 72 12/6/12 1:15 AM12/6/12 1:15 AM

The Loop

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the fl ow of the Loop and where it can be used

 ➤ Determining content display using the Loop

 ➤ Customizing the Loop with diff erent granularities of data access

 ➤ Using template tags

 ➤ Understanding global variables and their relationship to Loop

processing

 ➤ Working outside of the Loop

The Loop refers to how WordPress determines what content (posts, pages, or custom content)
to display on a page you are visiting. The Loop can display a single piece of content or a group
of posts and pages that are selected and then displayed by looping through the content; thus,
it’s called the Loop.

This is how WordPress displays blog posts by default. The Loop selects posts from the MySQL
database based on a set of parameters, and those parameters are typically determined by the
URL used to access your WordPress website. For example, the homepage might show all blog
posts in reverse chronological order by default. A category page, accessed via a URL such as
http://example.com/category/zombies, shows only blog posts assigned to that category,
in this case pages put into the zombies category. An archive page shows only blog posts that
are dated with that particular month and year. WordPress maps nearly every parameter about
your posts into a selection variable, providing the basis for an equally wide number of
different ways to alter the Loop’s content selection algorithm. It is very easy to customize what
content is displayed, and where, on your website with a thorough understanding of how the
Loop translates a URL into what you see when you access that link.

5

c05.indd 73c05.indd 73 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/category/zombies

74 ❘ CHAPTER 5 THE LOOP

This chapter discusses how the Loop works, where the Loop can be used, and the logical fl ow of the
Loop. It also covers how to customize the Loop using the many different functions and data access
methods available in WordPress. Global variables that maintain the current state are also discussed
along with working outside of the Loop.

UNDERSTANDING THE LOOP

Understanding how the Loop functions will help you understand how you can control it.
Controlling the Loop to display exactly the content you want will be one of your most used tools
in developing WordPress-powered websites. Because the Loop is at the heart of every WordPress
theme, being able to customize the display content opens up the doors to making WordPress look
and act however you want.

To understand the Loop, it helps to break down the steps WordPress takes to generate a page’s
content:

 1. The URL is matched against existing fi les and directories in the WordPress installation.
If the fi le is there, it is loaded by the web server. WordPress doesn’t actually get involved
in this decision; it’s up to your web server and the .htaccess fi le created by WordPress to
decide if the URL is something handled by the web server or to be turned into a WordPress
content query. This was covered in the discussion of permalinks in Chapter 2.

 2. If the URL doesn’t load a WordPress core fi le, it has to be parsed to determine what
content to load. The web server starts by loading the WordPress core through index.php to
begin the setup for the Loop. For example, when visiting a specifi c tag page such as
http://example.com/tag/bacon, WordPress will determine that you are viewing a tag
and load the appropriate template, select the posts saved with that tag, and generate the
output for the tag page.

 3. The translation of URL-to-content-selection magic happens inside of the parse_
query() method within the WP_Query object that WordPress created early on in its process-
ing. WordPress parses the URL fi rst into a set of query parameters that are described in the
next section. All query strings from the URL are passed into WordPress to determine what
content to display, even if they look like nicely formatted pathnames. If your site is using
pretty permalinks, the values between slashes in those permalinks are merely parameters
for query strings. For example, http://example.com/tag/bacon is the same as
http://example.com?tag=bacon, which conveys a query string of tag with a value of
bacon.

 4. WordPress then converts the query specifi cation parameters into a MySQL database
query to retrieve the content. The workhorse here is the get_posts() method within the
WP_Query object that is described later in this chapter. The get_posts() method takes all
of those query parameters and turns them into SQL statements, eventually invoking the
SQL string on the MySQL database server and extracting the desired content. The content
returned from the database is then saved in the WP_Query object to be used in the WordPress
Loop and cached to speed up other references to the same posts made before another
database query is executed.

c05.indd 74c05.indd 74 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/tag/bacon
http://example.com/tag/bacon
http://example.com?tag=bacon

Understanding the Loop ❘ 75

 5. Once the content is retrieved, WordPress sets all of the is_ conditional tags such as
is_home() and is_page(). These are set as part of executing the default query based on the
URL parsing, and you’ll consider cases where you may need to reset these tags.

 6. WordPress picks a template from your theme based on the type of query and the number of
posts returned — for example, a single post or a category-only query — and the output of
the query is passed to this default invocation of the Loop.

The Loop can be customized for different website purposes. For example, a news site might use the
Loop to display the latest news headlines. A business directory could use the Loop to display local
businesses alphabetically by name, or always put posts about sponsoring businesses at the top of
every displayed page. An e-commerce site might use the Loop to display products loaded into the
website. The possibilities are endless when customizing the Loop in WordPress because it gives you
complete control over what content is selected and the order in which it is rendered for display.

From Query Parameters to SQL

Once the query parameters have been established, either by disassembling the URL provided
by the reader or by having them explicitly set in a customized loop, the WP_Query object’s get_
posts() method translates those parameters into SQL for a database query. While you can exercise
great control over the type, selection, and ordering of content through the query parameters, the
WordPress core also exposes fi lters to allow you to change the generated SQL for even fi ner-grain
control over content selection and grouping.

The basic format of a SQL query is: SELECT fi elds FROM table WHERE conditions. “Fields”
are the columns of the database that you want returned; you usually don’t need to modify this part of
the query. The “conditions” specifi ed in the WHERE clause change the ordering, grouping, and number
of posts returned. If you dump out the generated SQL query by examining the request fi eld of the
WP_Query object, you’ll see that the WHERE portion of the SQL contains 1=1 as the fi rst conditional. If
there are no other content selection parameters, the 1=1 ensures that the generated SQL isn’t
syntactically malformed in the absence of other WHERE clauses; the SQL optimizer in MySQL knows
enough to ignore the 1=1.

“Table” is not simply the “posts” table in the MySQL database that contains all post data; it may
also refer to an SQL JOIN of two or more tables where you need to select posts based on hierarchical
metadata. WordPress makes it easy to put multiple tags on a post, or to put a post in more than one
category, but relational databases aren’t adept at managing these hierarchical or networked
relationships. As you see in Chapter 6, the WordPress data model uses multiple tables to manage these
complex relationships, but that makes queries such as “fi nd all posts tagged bacon” more diffi cult to
execute. For example, to select the posts tagged bacon, an SQL JOIN is needed to fi rst fi nd bacon in
the metadata taxonomy, build an intermediate, in-memory table of posts that have been tagged with
bacon, and then select posts whose IDs appear both in the intermediate table and the main WordPress
content table. Database afi cionados call this a “Cartesian product” or inner join of two or more
tables; the multiplicative description in both query complexity and memory consumption is accurate.

In Chapter 8, you will dig into plugins and how they attach to fi lter and action hook insertion
points in the WordPress core. Within the SQL request generation, there are a number of fi lters that
are invoked to give plugin authors late-binding and very explicit control over the SQL that gets
executed. For example, consider a plugin that changes the post selection based on custom post

c05.indd 75c05.indd 75 12/6/12 1:28 AM12/6/12 1:28 AM

76 ❘ CHAPTER 5 THE LOOP

metadata and context that the plugin maintains in a separate database table. Your plugin would use
the posts_join fi lter to rewrite the JOIN clause, adding another table and fi eld match clause to
further expand the selection set. If you want to explore the core for the gory details of SQL generation,
most of the query-to-request parsing is done in wp-includes/query.php, and the bulk of the JOIN
work is set up in wp-includes/taxonomy.php.

One fi nal note on SQL generation: WordPress does a very good job of building canonical URLs, that
is, one and only one way to reference a particular post. Search engines notoriously consider http://
example.com/bacon and http://example.com/2012/bacon as distinct pages, even if they refer to
the same piece of content (this is largely done to discourage more notorious practice of link farming
where many distinct URLs are generated to feign the popularity of a single target). Part of the URL
parsing function within the WordPress core attempts to clean up and redirect URLs to their canoni-
cal form; the same functions also make every effort to return some relevant content rather than a
404 page. As a result, if an attempt to load a page by name fails to return any content, WordPress
will insert a LIKE modifi er into the WHERE clause that contains the post name. For example, if a user
supplies the URL http://example.com/2012/scott, but you have no posts with the title “Scott,”
the LIKE clause will match any posts that start with “Scott,” such as “Scott Gomez Finally Scored.”
Canonical URLs and “like name” matching are part of the complex maze of URL rewriting and
intent parsing that try to generate a pleasant user experience, rather than an annoying 404 error.

Understanding Content in WordPress

Before diving into the Loop in detail, it’s important to understand the different types of content in
WordPress. By default, WordPress defi nes two types of content: posts and pages. What you’ll see
in Chapter 6 is that all content types are stored in the same MySQL table, and are differentiated by
their “type.” Since the release of WordPress 2.9, it’s possible to defi ne your own custom post types,
which is basically custom content in WordPress. For example, you could have an Events custom post
type to register events in WordPress.

Throughout this chapter, content is referred to as “posts,” but it’s important to remember that posts
could really be any type of content in WordPress. Custom post types are covered in Chapter 7.

Putting the Loop in Context

The Loop is the heart of a theme, which is what controls how
your content is displayed. It is the functional connection between
the MySQL database data and the HTML that is rendered in the
visitor’s browser. Basically, anywhere a post or page is displayed,
WordPress is going to use the Loop. This can be a single post or
page, a loop of posts, or a sequence of loops with different
display options.

Most WordPress themes feature a header, footer, and sidebar
element. Figure 5-1 shows how the Loop is placed directly in the
middle of these elements, creating your website content area.
This section of your website is usually dynamic and will change
as you navigate through it.

FIGURE 5-1: The WordPress Loop

Header

Sidebar

The WordPress Loop

Footer

c05.indd 76c05.indd 76 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/bacon
http://example.com/bacon
http://example.com/2012/bacon
http://example.com/2012/scott

Understanding the Loop ❘ 77

The Loop, by default, is used in your WordPress theme template
fi les. Custom Loops can be created anywhere in your theme
template fi les, as Figure 5-2 shows. Custom Loops are also used
in plugins and widgets. Loops can be used anywhere inside of
WordPress, but different methods exist for creating custom
Loops depending on where they are used, and the potential side
effects of each construction will differ.

Multiple Loops can be used throughout your theme template
fi les. Custom Loops can be created in your header, sidebars,
footer, and main content areas of your website. There is no limit
to the number of Loops that can be displayed on your website.
Keep in mind that a Loop is effectively a database query to select
content and then an iteration over the selection to display it. The
default Loop uses context from the visited URL to make that
selection but you can fi ne-tune and craft a query against the
WordPress content database to implement any number of content
management processes.

The following section looks at the basic fl ow control of the Loop and the WordPress template
functions provided to customize the way content is displayed while being handled inside of a loop.
Having armed you with the basics, you will now go into building custom Loops based on
hand-tailoring those query parameters.

Flow of the Loop

The Loop uses some standard programming conditional statements to determine what and how
to display. The fi rst statement in the Loop is an if statement that checks whether any posts exist,
because you might not have any posts with the specifi ed category or tag. If content exists, the
while statement is used to initiate the Loop and cycle through all posts or pages that need to be
displayed. Finally, the_post() function is called to build the post data, making it accessible to other
WordPress functions. Once the post data has been built, Loop content can be displayed in whatever
format you like.

Following is a minimal Loop example. This example features the only required elements for the
Loop to function properly:

<?php
if (have_posts()) :
 while (have_posts()) :
 the_post();
 //loop content (template tags, html, etc)
 endwhile;
endif;
?>

Remember that this is PHP code, so it needs to be surrounded in <?php and ?> tags. This is the
Loop in its simplest form. If you’re wondering how the output from the database query got handed
to this simple Loop when there are no variables passed as parameters, the answer lies in the global

FIGURE 5-2: Using multiple Loops

Header

Sidebar

Footer

c05.indd 77c05.indd 77 12/6/12 1:28 AM12/6/12 1:28 AM

78 ❘ CHAPTER 5 THE LOOP

variable $wp_query, which is an instance of WP_Query that is referenced by the functions in the
simple Loop. It is, in effect, the default query for the Loop. Note that by the time this default Loop
is called, WordPress has already called the get_posts() method within the default query object to
build the list of appropriate content for the URL being viewed, and the Loop in this case is charged
with displaying that list of posts. Later on, you look at how to hand-structure queries to exercise
fi ne-grain control over post selection, but for now it’s safe to assume that the database heavy lifting
has been done, and the results are stored in $wp_query, when the Loop is invoked.

Some very minimal requirements exist for the Loop to work in WordPress. Let’s break down this
example to look at the different parts of the Loop:

if (have_posts()) :

This line checks if any posts or pages are going to be displayed on the current page you are viewing.
If posts or pages exist, the next line will execute:

while (have_posts()) :

The preceding while statement starts the Loop, essentially looping through all posts and pages to
be displayed on the page until there are no more. The Loop will continue while content exists to be
displayed. Once all content has been displayed, the while loop will end. The have_posts() function
simply checks to see if the list of posts being processed is exhausted, or had no entries to begin with.

the_post();

Next, the the_post() function is called to load all of the post data. This function must be called
inside your loop for the post data to be set correctly. Calling the_post() in turn calls the
setup_postdata() function to set up the per-post metadata such as the author and tags of the
content you are displaying in the Loop, as well as the content of the post itself. This data is assigned
to a global variable each time through the Loop iteration. Specifi cally calling the_post() has the
side effect of setting up the global $post variable used by most of the template tags described later
on, and then advances to the next post in the list.

Setting up the post data also applies the appropriate fi lters to the raw content that comes out of the
WordPress database. WordPress stores user-edited content exactly as entered, so if a user adds a
shortcode, for example, to add a Google AdSense item at the end of a post, the shortcode is stored
in the database content. When the post setup is done, the plugin that converts that shortcode to a
chunk of JavaScript is called, along with other registered plugins that modify the raw post content.
You’ll look at the plugin mechanics in Chapter 8, but for now, it’s important to note the distinction
between the raw post data in the WordPress query object and the fi ltered content that is eventually
rendered.

//loop content

This is where all Loop template tags are placed and any additional code you want displayed inside
the Loop. This is covered in more detail further along in this chapter.

endwhile;
endif;

The endwhile and endif calls end the Loop. Any code placed after these two lines will show at the
bottom of your page, after all posts have been displayed. You could also place an else clause to dis-
play a message if there is no content to display in the Loop.

c05.indd 78c05.indd 78 12/6/12 1:28 AM12/6/12 1:28 AM

Template Tags ❘ 79

The Loop is usually surrounded by HTML tags in your theme template fi les. The following code
shows how the Loop is structured in the core Twenty Eleven theme that comes with WordPress:

<div id="primary">
 <div id="content" role="main">

 <?php if (have_posts()) : ?>

 <?php twentyeleven_content_nav('nav-above'); ?>

 <?php /* Start the Loop */ ?>
 <?php while (have_posts()) : the_post(); ?>

 <?php get_template_part('content', get_post_format()); ?>

 <?php endwhile; ?>

 <?php twentyeleven_content_nav('nav-below'); ?>

 <?php else : ?>

 <article id="post-0" class="post no-results not-found">
 <header class="entry-header">
 <h1 class="entry-title">
 <?php _e('Nothing Found', 'twentyeleven'); ?>
 </h1>
 </header><!-- .entry-header -->

 <div class="entry-content">
 <p>
 <?php _e('Apologies, but no results were found
 for the requested archive. Perhaps searching will
 help find a related post.', 'twentyeleven'); ?>
 </p>
 <?php get_search_form(); ?>
 </div><!-- .entry-content -->
 </article><!-- #post-0 -->

 <?php endif; ?>

 </div><!-- #content -->
</div><!-- #primary -->

Notice how the minimal Loop elements exist but are surrounded by HTML tags. This is how a
normal theme template fi le will be structured to utilize the Loop. The HTML elements can certainly
change, but the Loop elements stay the same. Customizing the style in which content is displayed
and choosing post metadata to include in the page composition is done through template tags.

TEMPLATE TAGS

PHP functions used in your WordPress theme templates to display Loop content are called template
tags. These tags are used to display specifi c pieces of data about your website and content. This
allows you to customize how and where content is displayed on your website.

c05.indd 79c05.indd 79 12/6/12 1:28 AM12/6/12 1:28 AM

80 ❘ CHAPTER 5 THE LOOP

For example, the the_title() template tag displays the title of your post or page inside the Loop.
The major benefi t of using template tags is that you don’t need to know PHP code to use them.

Many different template tags are available in WordPress. Some template tags must be inside the
Loop, whereas other tags can be used anywhere in your theme template fi les. Note that in this
context, template tags refer to the WordPress functions used to extract post data for display; template
fi les are the theme elements that control how content for a particular content type is displayed. Put
another way, template fi les contain Loops comprising template tags. For an updated list of template
tags available in WordPress, visit http://codex.wordpress.org/Template_Tags.

Commonly Used Template Tags

There is no shortage of template tags, but typically you will use only a handful of tags in your
Loops. Following are the most commonly used template tags available in the Loop. These template
tags will return and display the post data listed.

 ➤ the_permalink() — Displays the URL of your post.

 ➤ the_title() — Displays the title of the post.

 ➤ the_ID() — Displays the unique ID of your post.

 ➤ the_content() — Displays the full content of your post.

 ➤ the_excerpt() — Displays the excerpt of your post. If the Excerpt fi eld is fi lled out on the
Post edit screen, that will be used. If not, WordPress will auto-generate a short excerpt from
your post content.

 ➤ the_time() — Displays the date/time your post was published.

 ➤ the_author() — Displays the author of the post.

 ➤ the_tags() — Displays the tags attached to the post.

 ➤ the_category() — Displays the categories assigned to the post.

 ➤ edit_post_link() — Displays an edit link that is shown only if you are logged in and
allowed to edit the post.

 ➤ comments_popup_link() — Displays a link to the comments form of your post.

To learn how template tags work, just place any template tag inside the Loop and view the results.
The following example views the values of a couple different template tags:

<?php
if (have_posts()) :
 while (have_posts()) :
 the_post();
 ?>
 <a href="<?php the_permalink(); ?>"><?php the_title(); ?>

 <?php
 the_content();
 endwhile;
endif;
?>

c05.indd 80c05.indd 80 12/6/12 1:28 AM12/6/12 1:28 AM

http://codex.wordpress.org/Template_Tags

Customizing the Loop ❘ 81

As you can see, your post titles are displayed with links to the permalink for each post. The content
of the post is displayed directly below the post title.

Tag Parameters

Most template tags have parameters that can be added to modify the value returned. For example,
the the_content() template tag has two parameters. The fi rst parameter allows you to set the more
link text like so:

<?php the_content('Read more', false); ?>

Your post content will be displayed as normal, but when the <!--more--> tag is found in your post,
WordPress will automatically add the text Read more, which would link to the entire blog post. The
second parameter determines whether to display the teaser paragraph again when viewing the full
post. The default value is false so the teaser will be displayed in both places.

NOTE The more tag in WordPress allows you to display a defi ned teaser from the
full post on your website. For example, you could display the fi rst paragraph of a
post on your homepage, and only show the full blog post when a visitor clicks the
link to view the full post. To accomplish this, you can place <!--more--> in your
content in HTML view where you want this break to happen. In the visual edi-
tor, there is a button to insert a More tag.

You can also send multiple parameters to any template tag that supports it. For example, the
template tag the_title() accepts three parameters: $before, $after, and $echo. The following
code sets the the_title() tags $before and $after parameters to wrap the post title with h1 tags:

<?php the_title('<h1>', '</h1>'); ?>

You can also view the actual function in the WordPress source code. The post template functions
are located in wp-includes/post-template.php. Doing a quick search for function the_
title() will lead you to the exact function for the the_title() tag. You can also use the Codex for
a detailed description of the template tag you are working with, in this case
http://codex.wordpress.org/Template_Tags/the_title.

CUSTOMIZING THE LOOP

The opening discussion of Loop fl ow of control mentioned that the main workhorse for data
selection is the get_posts() method of the WP_Query object. In most cases, if you want to build a
custom Loop, you’ll build your own WP_Query object and reference it explicitly. Alternatively, you
can use the lower-level query_posts() and get_posts() functions (not to be confused with the
methods within the WP_Query object of the same name) to manipulate the output of the default
query that was passed into your Loop. Both query_posts() and get_posts() use the WP_Query
class to retrieve content. You’ll look at the lower level approaches and discuss how and where you
should — and shouldn’t — use them, but you’ll start with a discussion of how you build a custom
query object.

c05.indd 81c05.indd 81 12/6/12 1:28 AM12/6/12 1:28 AM

http://codex.wordpress.org/Template_Tags/the_title

82 ❘ CHAPTER 5 THE LOOP

Using the WP_Query Object

Once WordPress is handed a URL to parse by the web server, it goes to work disassembling the
tokens in that URL and converting them into parameters for a database query. Here’s a bit more
detail on what happens when manipulating your own WP_Query.

WP_Query is a class defi ned in WordPress that makes it easy to create your own custom Loops. Both
query_posts() and get_posts() use the WP_Query class to retrieve the WordPress content. When
you’re using query_posts(), the global variable $wp_query is used as an instance of WP_Query,
making $wp_query the default data store for several operations. Custom Loops can be used
anywhere in your theme template fi les to display different types of content; they must build on
separate instances of a WP_Query variable.

When you create a new WP_Query object, it’s instantiated with some default functions for building
queries, executing the query to get posts, and parsing parameters out of a URL. However, you can
use these built-in object methods to construct your own parameter strings, creating custom loops
that extract whatever particular content you need for that point in your Loop.

The following is an example of a custom Loop displaying the fi ve most recent posts on your website:

<?php
$myPosts = new WP_Query('posts_per_page=5');while ($myPosts->have_posts())
: $myPosts->the_post();
?>
 <!-- do something -->
<?php endwhile; ?>

Rather than using the simpler have_posts() and the_post() calls that you saw in the basic
Loop, this custom loop calls the methods of the newly created WP_Query object $myPosts. The
explicit invocation shown here and the default have_posts() call are functionally equivalent;
have_posts(), for example, is merely calling $wp_query->have_posts() using the global query
variable for the default query — that is, the one generated from parsing the URL handed to
WordPress by the web server.

Going into your default Loop from the URL used to invoke WordPress; there’s an additional step
that takes the URL and parses it into an appropriate query string using the parse_query() method
of the query object. When you build your own custom Loop, you explicitly set the parameters you
want to control the query. Here’s a bit more detail on what happens inside the query function:

 ➤ Calling $myPosts->query() converts the parameters into an SQL statement via the func-
tion $myPosts->get_posts(), which then executes the query against the MySQL database
and extracts the content you’ve requested.

 ➤ Equally important, the query call sets up the conditional tags such as is_home() and is_
single() that are dependent upon the type of page displayed and the quantity of content for
that page.

 ➤ The array of posts returned by the query is cached by WordPress so that future references to
the same query won’t generate additional database traffi c.

The key to building a powerful custom Loop is to map your content selection criteria into the right
set of query parameters.

c05.indd 82c05.indd 82 12/6/12 1:28 AM12/6/12 1:28 AM

Customizing the Loop ❘ 83

Building a Custom Query

Parameters are used to defi ne what content will be returned in your Loop, whether a custom Loop
or altering the primary Loop. When creating Loops it’s essential to understand what parameters are
available to help defi ne what content will be displayed. You can use many different, sometimes
confusing, parameters in creating your custom Loop to alter the output of your content.

Multiple parameters can also be set per query by separating the parameter name and values with an
ampersand. For a detailed list of available parameters, visit http://codex.wordpress
.org/Class_Reference/WP_Query#Parameters.

The following sections cover some of the more commonly used parameters.

Post Parameters

The most obvious, and sometimes most used parameters, select the number and types of posts to be
displayed:

 ➤ p=2 — Loads an individual post by ID.

 ➤ name=my-slug — Loads post based on post slug (permalink tail).

 ➤ post_status=pending — Loads posts by post status. For example, if you choose to see
only drafts, use post_status=draft.

 ➤ ignore_sticky_posts — Excludes sticky posts from being returned fi rst. A sticky post is
one that always sorts to the top of the list of posts, independent of the other parameters set
for the query. You can have multiple sticky posts, making them useful for calling attention
to news announcements, highlighting changes, or otherwise grabbing reader’s attention, and
this parameter lets you drop them from their priority slot at the top of the list.

 ➤ post_type=page — Loads posts based on type. If you only want to look at pages, not
posts, post_type=page will retrieve them. This parameter enables special-purpose loops to
select content based on custom post types, as you’ll see in Chapter 7.

 ➤ posts_per_page=5 — Number of posts to load per page. This is the default. To show all
posts, set this parameter to –1.

 ➤ offset=1 — Number of posts to skip before loading.

Page Parameters

Pages have parameters similar to those for posts to control their selection:

 ➤ page_id=5 — Loads an individual page by ID. Like post IDs and user IDs, page IDs can
be found in the dashboard by hovering over a page and looking at the URL displayed at the
bottom on your browser.

 ➤ pagename=Contact — Loads a page by name, in this case the Contact page.

 ➤ pagename=parent/child — Loads a child page by slug, or hierarchy of slugs (that is, its
path).

c05.indd 83c05.indd 83 12/6/12 1:28 AM12/6/12 1:28 AM

http://codex.wordpress.org/Class_Reference/WP_Query#Parameters
http://codex.wordpress.org/Class_Reference/WP_Query#Parameters

84 ❘ CHAPTER 5 THE LOOP

Category, Tag, and Author Parameters

Posts can also be sorted by the category into which they were placed, by tags applied to the post, or
by author information:

 ➤ cat=3,4,5 — Load posts based on category ID.

 ➤ category_name=About Us — Loads posts based on category name. Note that if a post
belongs to more than one category, it will show up in selections for each of those categories.

 ➤ tag=writing — Loads posts based on tag name.

 ➤ tag_id=34 — Loads posts based on tag ID.

 ➤ author=1 — Loads posts based on author ID.

 ➤ author_name=brad — Loads posts based on author’s name.

Time, Date, Ordering, and Custom Parameters

Parameters to select content based on their chronology are a key part of building an archive of
posts, or providing a view into content through a calendar on your blog’s homepage. You can also
change the sort parameter and the sort order. If you’re building an online index, and want to show
an alphabetical post listing, you’ll set the parameters for querying posts by month and author, but
order the results by title.

 ➤ monthnum=6 — Loads posts created in June.

 ➤ day=9 — Loads posts created on the 9th day of the month.

 ➤ year=2012 — Loads posts created in 2012.

 ➤ orderby=title — Field to order posts by.

 ➤ order=ASC — Defi nes ascending or descending order of orderby.

 ➤ meta_key=color — Loads posts by custom fi eld name. Refer to the custom taxonomy and
data discussion in Chapter 7 to see how custom fi elds are added to posts.

 ➤ meta_value=blue — Loads posts by custom fi eld value. Must be used in conjunction with
the meta_key parameter above.

Putting It Together

Now look at some examples using parameters. The following examples use the $myPosts-
>query() function from the $myPosts custom query object created in the example to select the con-
tent displayed in your custom Loop.

Display post based on post ID:

$myPosts = new WP_Query('p=1');

Display the fi ve latest posts, skipping the fi rst post:

$myPosts = new WP_Query('posts_per_page=5&offset=1');

c05.indd 84c05.indd 84 12/6/12 1:28 AM12/6/12 1:28 AM

Customizing the Loop ❘ 85

Display all posts from today:

// display all posts from the current date
$today = getdate(); // get todays date
$myPosts = new WP_Query('year=' .$today["year"]
 .'&monthnum=' .$today["mon"] .'&day=' .$today["mday"]);

Display all posts from October 31, 2013:

$myPosts = new WP_Query('monthnum=10&day=31&year=2013');

Display all posts from category ID 5 with the bacon tag:

$myPosts = new WP_Query('cat=5&tag=bacon');

Display all posts with the bacon tag, excluding posts in category ID 5:

$myPosts = new WP_Query('cat=-5&tag=bacon');

Display all posts with the tag writing or reading:

$myPosts = new WP_Query('tag=writing,reading');

Display all posts with the tags writing and reading and tv:

$myPosts = new WP_Query('tag=writing+reading+tv');

Display all posts with a custom fi eld named color with a value of blue:

$myPosts = new WP_Query('meta_key=color&meta_value=blue');

Adding Paging to a Loop

If your custom Loop requires paging (navigation links), you will need to take a few extra steps.
Paging is currently designed to work only with the $wp_query global variable; that is, it works within
the default Loop and requires some sleight of hand to make it work in custom Loops. You need to
trick WordPress into thinking your custom query is actually $wp_query in order for paging to work.

<?php
$temp = $wp_query;
$wp_query= null;
$paged = (get_query_var('paged')) ? get_query_var('paged') : 1;
$wp_query = new WP_Query('posts_per_page=5&paged='.$paged);
while ($wp_query->have_posts()) : $wp_query->the_post();
?>
 <h2>
 <a href="<?php the_permalink(); ?>"><?php the_title(); ?>
 </h2>
 <?php the_excerpt(); ?>
<?php endwhile; ?>

First, you have to store the original $wp_query variable into the temporary variable $temp. Next,
you set $wp_query to null to completely fl ush it clean. This is one of the few times it’s acceptable to
overwrite a global variable value in WordPress. Now set your new WP_Query object into the
$wp_query variable and execute it by calling the object’s query() function to select posts for your
custom Loop. Notice the $paged variable added to the end of the query. This stores the current

c05.indd 85c05.indd 85 12/6/12 1:28 AM12/6/12 1:28 AM

86 ❘ CHAPTER 5 THE LOOP

page, using the get_query_var() function, so WordPress knows how to display the navigation
links. Now display your navigation links for paging:

<div class="navigation">
 <div class="alignleft"><?php previous_posts_link('« Previous'); ?></div>
 <div class="alignright"><?php next_posts_link('More »'); ?></div>
</div>

Finally, you need to reset $wp_query back to its original value:

<?php
$wp_query = null;
$wp_query = $temp;
?>

Now your custom Loop will contain proper pagination based on the content returned.

Using query_posts()

A tremendous amount of customization can be done by specifying the appropriate set of parameters
for your Loop. While the WP_Query object is the most general-purpose mechanism for extracting
content from the WordPress database, there are other lower-level methods that you’ll encounter.

The query_posts() function is used to easily modify the content returned for the default WordPress
Loop. Specifi cally, you can modify the content returned in $wp_query after the default database
query has executed, fi ne-tune the query parameters, and re-execute the query using
query_posts(). The downside to calling query_posts() in this fashion is that the previously cached
results from the default query are discarded, so you’re incurring a database performance hit to use
this shortcut. The query_posts() function should be placed directly above the start of the Loop:

query_posts('posts_per_page=5&paged='.$paged);
if (have_posts()) :
 while (have_posts()) : the_post();
 //loop content (template tags, html, etc)
 endwhile;
endif;

This example tells WordPress to display only fi ve posts.

Explicitly calling query_posts() overwrites the original post content extracted for the Loop. This
means any content you were expecting to be returned before using query_posts() will not be
returned. For example, if the URL passed to WordPress is for a category page at http://example
.com/category/zombie/, none of the zombie category posts will be in the post list after query_
posts() has been called unless one is in the fi ve most recent posts. You explicitly overwrite the
query parameters established by the URL parsing and default processing when you pass the query
string to query_posts().

To avoid losing your original Loop content, you can save the parsed query parameters by using the
$query_string global variable:

// initialize the global query_string variable
global $query_string;

// keep original Loop content and change the sort order
query_posts($query_string . “&orderby=title&order=ASC”);

c05.indd 86c05.indd 86 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/category/zombie/
http://example.com/category/zombie/

Customizing the Loop ❘ 87

In the preceding example, you would still see all of your zombie category posts, but they would be
ordered alphabetically by ascending title. This technique is used to modify the original Loop content
without losing that original content.

You can also pack all of your query_posts() parameters in an array, making it easier to manage.
Following is an example of how to retrieve only the sticky post set in WordPress using an array
called $args to store the parameter values:

$args = array(
 'posts_per_page' => 1,
 'post__in' => get_option('sticky_posts')
);
query_posts($args);

If no sticky post is found, the latest post will be returned instead. The query_posts() function is
used to modify the main page Loop only. It is not intended to create additional custom Loops. If you
want to make a slight change to the default query — for example, adding posts of a specifi c category
or tag to every displayed page — then the query_posts() approach is a shortcut. However, it’s not
without side effects or cautions:

 ➤ query_posts() modifi es the global variable $wp_query and has other side effects. It should
not be called more than once and shouldn’t be used inside the Loop. The example shows the
call to query_posts() before post processing has started, when the extra parameters are
added to the query string but before the Loop has begun to step through the returned post
list. Calling query_posts() more than once, or inside the Loop itself, can result in your
main Loop being incorrect and displaying unintended content.

 ➤ query_posts() unsets the global $wp_query object, and in doing so, may invalidate the val-
ues of conditional tags such as is_page() or is_home(). Going through the entire
WP_Query object instantiation sets all of the conditional tags appropriately. For example,
you may fi nd with the shortcut that you have added content to a selection that the default
query found contained only one post, and therefore is_single() is no longer valid.

 ➤ Calling query_posts() executes another database query, invalidating all of the cached
results from the fi rst, default query. You at least double the number of database queries
executed and are incurring a performance hit for each trip back to MySQL; on the other
hand the default query has already been run by the time you get to the default Loop, so
there’s little chance to work around it if you’re building an entirely custom main Loop.

Using get_posts()

Like query_posts(), there’s an alternative, simpler access function called get_posts() that
retrieves raw post data. You’ll see get_posts() used in administration pages to generate a list of
pages of a particular type, or it may be used within a plugin to grab all raw data for a set of posts
and examine it for patterns such as common terms, tags, or external links, with the intent of
discarding the content after a quick digestion. It’s not intended for user-facing content display
because it turns off much of query processing and fi ltering that is done within the more general
WP_Query approach.

What get_posts() lacks, specifi cally, is the ability to set up all of the global data needed to make
template tags refl ect the current post data. One main issue is that not all template tags are available

c05.indd 87c05.indd 87 12/6/12 1:28 AM12/6/12 1:28 AM

88 ❘ CHAPTER 5 THE LOOP

to get_posts() by default. To fi x this defi ciency, you need to call the setup_postdata() function to
populate the template tags for use in your Loop. The following example shows how to retrieve a
single random post using get_posts():

<?php

$randompost = get_posts('numberposts=1&orderby=rand');
foreach($randompost as $post) :
 setup_postdata($post);
?>
<h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></h1>
<?php the_content(); ?>
<?php endforeach; ?>

You’ll notice another major difference using get_posts() — the value returned is an array. The
foreach loop code is used to cycle through the array values. This example returns only one
post, but if more than one were returned, this would cycle through each. Then the setup_post-
data() function is called to populate the data for your template tags.

Remember that you can also set up your get_posts() parameter using an array:

<?php
$args = array(
 'numberposts' => 1,
 'orderby' => rand
);

$randompost = get_posts($args);

Although you may see older code using get_posts() or query_posts() constructions, WP_Query
is the preferred approach and should be the heart of custom loop syntax. However, there are times
when you’ll want the quick-and-dirty access provided by get_posts() to generate additional con-
text or data for further customization of your Loop or in a plugin.

Resetting a Query

When customizing the main Loop, or creating custom Loops, it’s a good idea to reset the Loop data
after you are done. WordPress features two different functions to handle this: wp_reset_postdata()
and wp_reset_query().

The fi rst method for resetting post data is wp_reset_data(). This function actually restores the
global $post variable to the current post in the main query. This is the preferred method when using
WP_Query to create custom Loops.

For example, assume you have the following custom Loop in your theme’s header.php fi le:

<?php
$myPosts = new WP_Query('posts_per_page=1&orderby=rand');

// The Loop
while ($myPosts->have_posts()) : $myPosts->the_post();
 ?><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
<?php
endwhile;
?>

c05.indd 88c05.indd 88 12/6/12 1:28 AM12/6/12 1:28 AM

Customizing the Loop ❘ 89

This will display a random post in the header of your theme. This code will also change the main
query object for other Loops on the page. The original query data will not be available, which could
produce unexpected results on the main posts Loop for your theme.

To fi x the problem, place a call to wp_reset_postdata() directly after your custom Loop like so:

$myPosts = new WP_Query('posts_per_page=1&orderby=rand');

// The Loop
while ($myPosts->have_posts()) : $myPosts->the_post();
 ?><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
<?php
endwhile;

// Reset Post Data
wp_reset_postdata();

Calling this function will restore the $post variable to the current post in the query. This will
eliminate any strangeness in the main query for the page you are viewing.

The second method available for resetting post data is the wp_reset_query() function. From time
to time, you may run into problems with page-level conditional tags being used after a custom Loop
has been created. Conditional tags allow you to run different code on different pages in WordPress,
for example, using the conditional tag is_home() to determine if you are viewing the main blog
page. This problem is caused, as indicated in the, “Using query_posts()” section, by potentially
changing the output of a database query after setting the conditional tags based on its original set of
values. To fi x this issue, you need to call wp_reset_query(). This function will properly restore the
original query, including the conditional tags set up early in the URL parsing process.

Consider the following example:

<?php query_posts('posts_per_page=5'); ?>
<?php if (have_posts()) : while (have_posts()) : the_post(); ?>
 <a href="<?php the_permalink(); ?>"><?php the_title(); ?>

<?php endwhile; endif; ?>

<?php
if(is_home() && !is_paged()):
 wp_list_bookmarks('title_li=&categorize=0');
endif;
?>

Executing this code will return the latest fi ve posts followed by the links saved in your WordPress
link manager. The problem you will run into is that the is_home() conditional tag will not be
interpreted correctly, meaning your links will show on every page, not just the homepage. To fi x this
issue, you need to include wp_reset_query() directly below your Loop:

<?php query_posts('posts_per_page=5'); ?>
<?php if (have_posts()) : while (have_posts()) : the_post(); ?>
 <a href="<?php the_permalink(); ?>"><?php the_title(); ?>

<?php endwhile; endif; ?>

<?php wp_reset_query(); ?>

<?php

c05.indd 89c05.indd 89 12/6/12 1:28 AM12/6/12 1:28 AM

90 ❘ CHAPTER 5 THE LOOP

if(is_home() && !is_paged()):
 wp_list_bookmarks('title_li=&categorize=0');
endif;
?>

Now that you have properly restored your Loop’s instance of the WP_Query object, the conditional
tag is_home() will be followed and your links will now display only on the homepage of your
website. It’s a good practice to add wp_reset_query() after using query_posts() in your Loop to
ensure you do not run into problems down the road. The wp_reset_query() function actually calls
wp_reset_postdata(), but it does one additional step. The function actually destroys the previous
query before resetting it. In short, wp_reset_query() should always be used after a query_posts()
Loop and wp_reset_postdata() should be used after a WP_Query or get_posts() custom Loop.

More Than One Loop

The Loop can be used multiple times throughout your theme and plugins. This makes it easy to
display different types of content in multiple places throughout your WordPress website. Maybe you
want to display your most recent blog posts below each page on your website. You can achieve this
by creating more complex Loops that make multiple passes through the list of posts, or by generating
multiple post arrays over which to loop.

Nested Loops

Nested Loops can be created inside your theme templates using a combination of the main Loop
and separate WP_Query instances. For example, you can create a nested Loop to display related posts
based on post tags. The following is an example of creating a nested Loop inside the main Loop to
display related posts based on tags:

<?php
if (have_posts()) :
 while (have_posts()) :
 the_post();

 //loop content (template tags, html, etc)
 ?>
 <h1><a href="<?php the_permalink(); ?>"><?php the_title(); ?></h1>
 <?php
 the_content();

 $tags = wp_get_post_terms(get_the_ID());
 if ($tags) {

 echo 'Related Posts';

 $tagcount = count($tags);
 for ($i = 0; $i < $tagcount; $i++) {
 $tagIDs[$i] = $tags[$i]->term_id;
 }

 $args=array(

c05.indd 90c05.indd 90 12/6/12 1:28 AM12/6/12 1:28 AM

Customizing the Loop ❘ 91

 'tag__in' => $tagIDs,
 'post__not_in' => array($post->ID),
 'posts_per_page' => 5,
 'ignore_sticky_posts' => 1
);
 $relatedPosts = new WP_Query($args);
 if($relatedPosts->have_posts()) {
 //loop through related posts based on the tag
 while ($relatedPosts->have_posts()) :
 $relatedPosts->the_post(); ?>
 <p><a href="<?php the_permalink(); ?>">
 <?php the_title(); ?></p>
 <?php
 endwhile;
 }

 }
 endwhile;
endif;
?>

This code will display all of your posts as normal. Inside the main Loop, you check if any other
posts contain any of the same tags as your main post. If so, you display the latest fi ve posts that
match as related posts. If no posts match, the related posts section will not be displayed.

Multi-Pass Loops

The rewind_posts() function is used to reset the post query and loop counter, allowing you to do
another Loop using the same content as the fi rst Loop. Place this function call directly after you
fi nish your fi rst Loop. Here’s an example that processes the main Loop content twice:

<?php while (have_posts()) : the_post(); ?>
 <!-- content. -->
<?php endwhile; ?>

<?php rewind_posts(); ?>

<?php while (have_posts()) : the_post(); ?>
 <!-- content -->
<?php endwhile; ?>

Advanced Queries

You can also perform more advanced queries in your Loops. Now construct a Loop that will com-
pare a custom fi eld value using the meta_compare parameter:

$args = array(
 'posts_per_page' => '-1',
 'post_type' => 'product',
 'meta_key' => 'price',
 'meta_value' => '13',
 'meta_compare' => '<='

c05.indd 91c05.indd 91 12/6/12 1:28 AM12/6/12 1:28 AM

92 ❘ CHAPTER 5 THE LOOP

);

$myProducts = new WP_Query($args);

// The Loop
while ($myProducts->have_posts()) : $myProducts->the_post();
 ?><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
<?php
endwhile;

// Reset Post Data
wp_reset_postdata();

As you can see, the meta_compare parameter is used to display all products with a meta value for
price that is less than or equal to (<=) 13. The meta_compare parameter can accept all sorts of com-
parison operators such as !=, >, >=, <, <=, and the default, which is =.

For more complex meta data queries, you’ll use the meta_query parameter. Now you can expand
upon the preceding example. Instead of just returning product entries that are less than or equal to a
price of 13, you can also only return products that are the color blue:

$args = array(
 'post_type' => 'product',
 'meta_query' => array(
 array(
 'key' => 'color',
 'value' => 'blue',
 'compare' => '='
),
 array(
 'key' => 'price',
 'value' => '13',
 'type' => 'numeric',
 'compare' => '<='
)
)
);

$myProducts = new WP_Query($args);

// The Loop
while ($myProducts->have_posts()) : $myProducts->the_post();
 ?><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
<?php
endwhile;

// Reset Post Data
wp_reset_postdata();

Notice the meta_query parameter accepts an array of parameters. In this example, the fi rst item in
the array is an array to verify the products are blue. The second parameter is an array to verify the
product price is less than or equal to 13.

Creating Loops using meta query parameters can be extremely powerful. This is an important tool
for creating complex websites with various meta data options.

c05.indd 92c05.indd 92 12/6/12 1:28 AM12/6/12 1:28 AM

Global Variables ❘ 93

GLOBAL VARIABLES

A global variable is a variable that has a defi ned value that can be accessed anywhere within the
WordPress execution environment. These variables store all types of information about the Loop
content, author, and users, and specifi c information about the WordPress installation such as how
to connect to the MySQL database. Global variables should only be used to retrieve data, meaning
you should never write data to these variables directly. Overwriting the global variable values could
cause unexpected results in WordPress because signifi cant parts of core and extended functionality
depend on these values being set within one context and remaining consistent for the duration of
a query, page load, or single-post handling. Assigning values to global variables almost always
has unintended side effects, and they’re almost always not what the user or blog author wanted.
However, global variables are discussed here to shed more light on how post data can be
manipulated, and you may see code snippets that utilize these functions for post processing outside
of the Loop.

Post Data

You saw how the key fi rst step in the Loop is calling the_post(). Once invoked, you will have
access to all of the data in WordPress specifi c to the post being displayed. This data is stored in
the global $post variable. The $post variable stores the post data of the last post displayed on the
page. So if your Loop displays ten posts, the $post variable will store post data for the tenth post
displayed.

The following example shows how you can reference the $post global variable and display all values
in the array using the print_r() PHP function.

<?php
global $post;
print_r($post); //view all data stored in the $post array
?>

The preceding code will print the array values for the $post global variable. The default WordPress
blog post would look like this:

stdClass Object
(
 [ID] => 1
 [post_author] => 1
 [post_date] => 2012-06-09 19:05:19
 [post_date_gmt] => 2012-06-09 17:23:50
 [post_content] => Welcome to WordPress. This is your first post.
 Edit or delete it, then start blogging!
 [post_title] => Hello world!
 [post_excerpt] =>
 [post_status] => publish
 [comment_status] => open
 [ping_status] => open
 [post_password] =>
 [post_name] => hello-world
 [to_ping] =>
 [pinged] =>

c05.indd 93c05.indd 93 12/6/12 1:28 AM12/6/12 1:28 AM

94 ❘ CHAPTER 5 THE LOOP

 [post_modified] => 2012-06-09 19:04:12
 [post_modified_gmt] => 2012-06-09 19:04:12
 [post_content_filtered] =>
 [post_parent] => 0
 [guid] => http://localhost/Brad/?p=1
 [menu_order] => 0
 [post_type] => post
 [post_mime_type] =>
 [comment_count] => 1
 [ancestors] => Array
 (
)

 [filter] => raw
)

As you can see, the $post global variable contains all sorts of data for the post. You can also display
specifi c pieces of data from the array, such as the post title and content like so:

<?php
global $post;
echo $post->post_title; //display the post title
echo $post->post_content; //display the post content
?>

Accessing the content through the global $post variable means that you are accessing the unfi ltered
content. This means any plugins that would normally alter the output of the content will not affect
the global content value. For example, if you had the built-in [gallery] shortcode in your post to
display all images uploaded on the post, retrieving the post content as shown would return
[gallery] instead of the actual image gallery.

Remember that WordPress provides template tags that can be called anywhere to retrieve these
values as well, and in most cases, template tags are going to be the preferred mechanism for getting
at these bits. For example, if you need to get the permalink of your post, you can use the following
method:

<?php
global $post;
echo get_permalink($post->ID); //displays the posts permalink
?>

This is covered in more detail in the section, “Working Outside the Loop,” later in this chapter.

Author Data

$authordata is a global variable that stores information about the author of the post being dis-
played. You can use this global variable to display the author’s name:

<?php
global $authordata;
echo 'Author: ' .$authordata->display_name;
?>

c05.indd 94c05.indd 94 12/6/12 1:28 AM12/6/12 1:28 AM

http://localhost/Brad/?p=1

Global Variables ❘ 95

The $authordata variable is created when setup_postdata() is called during the_post()
function call in the Loop. This means the $authordata global variable will not be created until the
Loop has run for the fi rst time. Another problem with this method is that the global values do not
get passed through hook fi lters, meaning that any plugin you install to override this functionality
would not be run.

The preferred method for accessing the author metadata, like that for getting post data, is to use the
available WordPress template tags. For example, to display the author’s display name, you would use
this code:

<?php
echo 'Author: ' .get_the_author_meta('display_name');
?>

The get_the_author_meta() and the_author_meta() functions are available for retrieving all
metadata related to the author of the content. If this template tag is used inside the Loop, there is no
need to pass the user ID parameter. If used outside of the Loop, the user ID is required to determine
what author metadata to retrieve.

User Data

The $current_user global variable stores information on the currently logged-in user. This is the
account that you are currently logged in to WordPress with. Following is an example showing how
to display the logged-in user’s display name:

<?php
global $current_user;
echo $current_user->display_name;
?>

This is a useful technique if you want to display a welcome message to your users. Remember that
the display name will default to the user’s username. To display a welcome message to any user that
is logged in, you could use this code:

<?php
global $current_user;
if ($current_user->display_name) {
 echo 'Welcome ' .$current_user->display_name;
}
?>

Environmental Data

WordPress also has global variables created for browser detection. The following is an example
showing how you can detect the user’s browser version in WordPress using global variables:

<?php
global $is_lynx, $is_gecko, $is_IE, $is_opera, $is_NS4,
$is_safari, $is_chrome, $is_iphone;

if ($is_lynx) {
 echo "You are using Lynx";
}elseif ($is_gecko) {
 echo "You are using Firefox";

c05.indd 95c05.indd 95 12/6/12 1:28 AM12/6/12 1:28 AM

96 ❘ CHAPTER 5 THE LOOP

}elseif ($is_IE) {
 echo "You are using Internet Explorer";
}elseif ($is_opera) {
 echo "You are using Opera";
}elseif ($is_NS4) {
 echo "You are using Netscape";
}elseif ($is_safari) {
 echo "You are using Safari";
}elseif ($is_chrome) {
 echo "You are using Chrome";
}elseif ($is_iphone) {
 echo "You are using an iPhone";
}
?>

This is extremely useful when designing a website that needs to include browser-specifi c tasks or
functionality. As always, it’s best to stick with web standards and degrade gracefully for lesser
browsers, but in some circumstances this can be very benefi cial. For example, you can use the
$is_iphone variable to load a custom style sheet for iPhone web users.

WordPress features another global variable to detect if the user is on a mobile device, which could
be a smartphone or tablet. This global variable is called $is_mobile. Rather than calling this global
variable directly, there’s a handy function available called wp_is_mobile(). This function detects if
the user is on a mobile device. If you are browsing using a mobile device, the function returns true;
if not, the function returns false, as shown here:

if (wp_is_mobile()) {
 echo "You are viewing this website on a mobile device";
}else{
 echo "You are not on a mobile device";
}

WordPress also stores what type of web server the website is hosted on using the $is_IIS and
$is_apache global variables. Here’s an example:

<?php
global $is_apache, $is_IIS;
if ($is_apache) {
 echo "web server is running Apache";
}elseif ($is_IIS) {
 echo "web server is running IIS";
}
?>

Depending what web server a website is using, code can produce different results than expected.
As a developer, you need to consider that your plugins and themes may be running on WordPress
installations on different web servers; you might also need to check what the user is running in order
to accomplish specifi c tasks.

Global Variables or Template Tags?

Generally speaking, template tags should be used whenever they can be. There will be certain
instances where a template tag will not be available. In this case, global variables can be substituted
to access the information you need. Also, global variables are great for retrieving unfi ltered data,

c05.indd 96c05.indd 96 12/6/12 1:28 AM12/6/12 1:28 AM

Working Outside the Loop ❘ 97

meaning the values will bypass any plugin, altering what would normally be used against the con-
tent and giving you the original value to work with. Once your code has accessed or processed the
original value, you can still force the plugin fi lters to run using the following code:

<?php apply_filters('the_content', $post->post_content);?>

While this is included in a discussion of working outside of the Loop, you can access these global
variables inside the loop, but again remember to treat globals as read-only, as changing their values
will have possibly negative side effects.

WORKING OUTSIDE THE LOOP

There are times when you’ll want to access generic post information, or to manipulate some infor-
mation about the currently displayed post outside of the Loop. WordPress provides some functions
to operate on sets of posts for even fi ner-grain control over post display.

Along with access to global variables, there is a set of WordPress functions to return generic infor-
mation that’s not specifi c to a single post, or the post currently displayed. Following is a list of fre-
quently used functions when working outside the Loop:

 ➤ wp_list_pages() — Displays a list of pages as links

 ➤ wp_list_categories() — Displays a list of categories as links

 ➤ wp_list_bookmarks() — Displays links saved in the Links SubPanel

 ➤ wp_tag_cloud() — Displays a tag cloud from all tags

 ➤ get_permalink() — Returns the permalink of a post

 ➤ next_posts_link() — Link to display previous posts

 ➤ previous_posts_link() — Link to display next posts

You already saw how you could create navigational links using next_posts_link() and
previous_posts_link() in the custom Loop example. Now explore some of these functions to get
a real feel for how they work.

To display a list of pages in WordPress, you can use the wp_list_pages() function. This function
will return your pages in a list format, so it’s important to wrap the function call with tags, as
shown here:

 <?php wp_list_pages('title_li='); ?>

The preceding code would generate a list of pages from WordPress with links. Notice that you set
the parameter title_li to nothing, which eliminates the default title displayed for your pages. The
function would generate your menu list like so:

 <li class="page_item page-item-1">
 About

c05.indd 97c05.indd 97 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/about/

98 ❘ CHAPTER 5 THE LOOP

 <li class="page_item page-item-2">
 Order

 <li class="page_item page-item-3">
 Contact

You can also use the wp_page_menu() function to generate a page menu. There are several advantages
to this page listing function. The fi rst is a new show_home parameter allowing a Home link to
automatically be added to the list of pages. You also don’t have to remove the title using title_li
as done in the preceding code. This function also wraps a custom <div> around your menu, the
class of which you can set. The following is an example of this function:

<?php wp_page_menu('show_home=1&menu_class=my-menu&sort_column=menu_order'); ?>

Another common function for generating links is wp_list_categories(). This function lists your
categories, and subcategories, in a list as well. Consider the following example:

 <?php wp_list_categories('title_li=&depth=4&orderby=name&exclude=8,16,34'); ?>

This code will generate a list of categories with links. As before, you are setting your title to noth-
ing, rather than the default Categories title. You are also setting the depth to 4. The depth parameter
controls how many levels in the hierarchy of categories to be included in the list. The categories will
be ordered by their name. You are also excluding three categories (8, 16, and 34) based on their IDs.

The functions next_posts_link() and previous_posts_link() are typically used directly after
your Loop has completed. These two functions will generate the previous and next links for view-
ing more posts on your website. Notice that the next_posts_link() function actually returns your
previous posts. The reason for this is that WordPress assumes your posts are displaying in reverse
chronological order, meaning the next page of posts would actually be posts from earlier in the
timeline.

Now imagine you’d like to load a single post outside of the Loop. To do this, you use the
get_post() function to load your post data. The following example loads the post data for
post ID 1031:

<?php
$my_id = 1031;
$myPost = get_post($my_id);
echo 'Post Title: ' .$myPost->post_title .'
';
echo 'Post Content: ' .$myPost->post_content .'
';
?>

The get_post() function has only one required parameter: the post ID you want to load. You must
pass a variable containing an integer for the ID. Passing a literal integer (for example, 5) will cause a
fatal error. The second optional parameter is how you would like the results returned: as an object,
an associative array, or a numeric array. By default, an object is returned. To return an associative
array you can run this code:

c05.indd 98c05.indd 98 12/6/12 1:28 AM12/6/12 1:28 AM

http://example.com/order/
http://example.com/contact/

Working Outside the Loop ❘ 99

<?php
$my_id = 1031;
$myPost = get_post($my_id, ARRAY_A);
echo 'Post Title: ' .$myPost['post_title'] .'
';
echo 'Post Content: ' .$myPost['post_content'] .'
';
?>

No matter how you return the results, however, this invocation of get_post() returns the raw content
from the WordPress database. Filters and processing normally done within the loop won’t be applied
to the returned content. The solution is to use the setup_postdata() function in conjunction with
get_post() to set up your global post data and template tags for use with your post:

<?php
$my_id = 1031;
$myPost=get_post($my_id);
setup_postdata($myPost);
the_title();
the_content();
?>

The get_post() function uses the internal WordPress object cache. This means that if the post you
are loading is already in the cache you will avoid running an unneeded database query. It’s easy to
see how useful this function can be to quickly and effi ciently load a single post outside of the Loop.

Some functions that can be used inside the Loop can also be used outside of the Loop. For example,
you can use the the_author_meta() function to retrieve specifi c author metadata:

The email address for user id 1 is <?php the_author_meta('user_email', 1); ?>

Remember that when calling the the_author_meta() function outside of the Loop, you have to
specify the author’s ID that you want to load metadata for. If you call this function inside the Loop,
you do not need to specify this ID because it will load the author data for the current post.

WordPress also features specifi c functions for retrieving individual data about a post outside of the
Loop. For example, you can use the get_the_title() function to retrieve a post’s title based on
post ID like so:

<?php
echo 'Title: ' .get_the_title(1031);
?>

You can also use a function to retrieve post metadata (custom fi elds) from an individual post. To do
this, you use the get_post_meta() function, as shown here:

<?php
echo 'Color: ' .get_post_meta(1031, 'color', true);
?>

The get_post_meta() function accepts three parameters: post ID, key, and single. The post ID
is the ID of the post you want to load metadata for. The key is the name of the meta value you
want to load. The third optional value determines whether the results are returned as an array or
whether the function will return a single result. By default, this is set to false so an array would be
returned. As you can see, you can set this value to true so only a single color is returned.

c05.indd 99c05.indd 99 12/6/12 1:28 AM12/6/12 1:28 AM

100 ❘ CHAPTER 5 THE LOOP

SUMMARY

This chapter covered the basic mechanics of WordPress content selection and display and provided a
guide to the WordPress core to help you locate the code used to implement these functions. The real
power of WordPress is in its extensibility through plugins and themes. You are fi rst going to look
at the WordPress data model in more detail in Chapter 6, showing you how the various data items
saved for all content, users, and metadata relate to each other. Chapter 7 will cover custom post
types, custom taxonomies, and metadata showing you the various types of content you can defi ne
and use in WordPress. You will then use that as the basis for a full-fl edged plugin construction
discussion in Chapter 8. Along with plugins, themes are the other primary avenue for extending and
customizing WordPress, and you reapply some of the Loop constructs with a deeper look at
templates and content presentation in Chapter 9.

c05.indd 100c05.indd 100 12/6/12 1:28 AM12/6/12 1:28 AM

Data Management

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the WordPress database

 ➤ Learning about database table relationships

 ➤ Working with the WordPress database class

 ➤ Debugging custom queries

Almost every website on the Internet today is connected to a database that stores informa-
tion about that website. WordPress is no different and is powered by a MySQL database
back end. This database stores all of the data for your website, including your content,
users, links, metadata, settings, and more. This chapter covers how data is stored, what data
is stored, and how to work with that data in WordPress to help you build amazing
websites.

DATABASE SCHEMA

The default installation of WordPress contains 11 database tables. WordPress prides itself
on being very lightweight and the database is the foundation for this. The database struc-
ture is designed to be very minimal yet allow for endless fl exibility when developing and
 designing for WordPress. To understand the database schema, it helps to view a database
diagram.

Figure 6-1 shows an overview of the WordPress database structure and the tables created dur-
ing a standard WordPress installation. Keep in mind that plugins and themes have the ability
to create custom tables. WordPress Multisite also creates additional tables so your WordPress
database may contain more tables than just the default WordPress tables.

6

c06.indd 101c06.indd 101 12/6/12 1:29 AM12/6/12 1:29 AM

102 ❘ CHAPTER 6 DATA MANAGEMENT

FIGURE 6-1: WordPress database diagram

When a new major release of WordPress is launched, a few database changes are usually made.
These changes are usually very minor, such as changing a table fi eld data type or removing a
fi eld that is no longer in use. Backward compatibility is a major focus for the WordPress devel-
opment community so any changes made to the database are highly scrutinized and will rarely
affect active plugins and themes. The Codex features a very thorough database changelog you
can reference when a new version of WordPress is released: http://codex.wordpress.org/
Database_Description#Changelog.

The table structure in WordPress is very consistent. Each table in your database contains a unique
ID fi eld, which is the primary key of the table. Each table also contains one or more indexes on
fi elds, which improves the speed of data retrieval when executing queries against the data. As you
saw in Chapter 5, each trip through the Loop in a theme is going to generate at least one, and per-
haps several, queries to extract posts, pages, and their related metadata or comments.

c06.indd 102c06.indd 102 12/6/12 1:29 AM12/6/12 1:29 AM

http://codex.wordpress.org/Database_Description#Changelog
http://codex.wordpress.org/Database_Description#Changelog

Table Details ❘ 103

The most important fi eld in every table is the unique ID fi eld. This fi eld is not always named ID, but
is an auto-incrementing fi eld used to give each record in the table a unique identifi er. For example,
when you fi rst install WordPress, a default post is created titled “Hello world!” Because this is the
fi rst post created in the wp_posts table, the ID for this post is 1. Each post is given a unique ID that
can be used to load post-specifi c information and can also be used as the joining fi eld against other
tables in the database.

There is one caveat to this, and that is post revisions, attachments, and custom post types. Each one
of these entries is saved as a new record in the wp_posts table so they each get their own unique ID,
which means your published post IDs may not be sequential. For example, your fi rst post may have
an ID of 1, whereas your second post may have an ID of 15. It all depends on how many additional
entries have been created between each post.

TABLE DETAILS

Currently, 11 database tables have been created for WordPress. Following is a list of those tables and
details on what data they store:

 ➤ wp_commentmeta — Contains all metadata for comments.

 ➤ wp_comments — Contains all comments within WordPress. Individual comments are linked
back to posts through a post ID.

 ➤ wp_links — Contains all links added via the Link Manager section.

 ➤ wp_options — Stores all website options defi ned under the Settings SubPanel. Also stores
plugin options, active plugins and themes, and more.

 ➤ wp_postmeta — Contains all post metadata (custom fi elds).

 ➤ wp_posts — Contains posts of all types (default and custom post types), pages, media
records, and revisions. Under most circumstances, this is the largest table in the
database.

 ➤ wp_terms — Contains all taxonomy terms defi ned for your website, mapping their text
descriptions to term numbers that can be used as unique indexes into other tables.

 ➤ wp_term_relationships — Joins taxonomy terms with content, providing a membership
table. It maps a term such as a tag or category name to the page or post that references it.

 ➤ wp_term_taxonomy — Defi nes the taxonomy to which each term is assigned. This table
allows you to have categories and tags with the same name, placing them in different named
taxonomies.

 ➤ wp_users — Contains all users created in your website (login, password, e-mail).

 ➤ wp_usermeta — Contains metadata for users (fi rst/last name, nickname, user level,
and so on).

Each database table has a specifi c purpose within WordPress. The next section breaks down some of
the more common tables and looks at some examples of working with each.

c06.indd 103c06.indd 103 12/6/12 1:29 AM12/6/12 1:29 AM

104 ❘ CHAPTER 6 DATA MANAGEMENT

WordPress Content Tables

To retrieve all of your website content, you’ll be accessing the wp_posts table. This table stores all
of your posts, pages, attachments, and revisions. Attachment records are stored in this table, but the
actual attachments are not. They are physically stored on your hosting server as a standard fi le.
The following SQL query is an example of how to extract all of your posts from the database, and
is the short form of what happens in the default WordPress Loop:

SELECT * FROM wp_posts
WHERE post_type = 'post'
AND post_status = 'publish'
ORDER BY post_date DESC

This query selects all records from wp_posts with a post_type of 'post'. The post_type fi eld
 designates what type of content you are viewing. To return all pages, just change that value to 'page'.
In this example, you want published posts only, so make sure post_status is set to 'publish'.
You are also ordering your table records by post_date descending, so your posts will be displayed
in reverse chronological order. Querying data and what tools are available to help you do so are
 discussed later in this chapter.

Let’s explore some of the more useful fi elds in the wp_posts table. You already know your ID fi eld
contains your post’s unique ID. The post_author fi eld is the unique ID of the author of the post.
You can use this to retrieve author-specifi c data from the wp_users table. The post_date is the
date the post was created. The post_content fi eld stores the main content of your post or page and
post_title is the title of that content.

One very important fi eld is the post_status fi eld. Currently, seven different post statuses are
defi ned in WordPress:

 1. publish — A published post or page.

 2. inherit — A post revision.

 3. pending — Post that is pending review by an administrator or editor.

 4. private — A private post.

 5. future — A post scheduled to publish at a future date and time.

 6. draft — A post still being created and is a draft.

 7. trash — Content is in the trash bin and can still be recovered.

Post status comes into play when contributor roles are used to limit a post creator’s ability to post or
edit existing content. The use of roles is discussed in Chapter 12, and their impact on content man-
agement workfl ow is discussed in Chapter 14. As with almost everything in WordPress, custom post
statuses can be created by plugins and themes.

The post_type is also stored in this table. This value is what distinguishes different types of content
in WordPress: posts, pages, revisions, and attachments. Since the release of WordPress 2.9, custom
post types can be created, which opens the door to endless possibilities when defi ning custom con-
tent in WordPress.

c06.indd 104c06.indd 104 12/6/12 1:29 AM12/6/12 1:29 AM

Table Details ❘ 105

The wp_users table contains data for your registered member accounts. Again, you see the ID
fi eld indicating the unique identifi er for user records. The user_login is the username of the user.
This is the value the user must enter when logging in to WordPress. The user_pass fi eld contains
the phpass encrypted user password. The registered user’s e-mail is stored in the user_email
fi eld. The user_url fi eld contains the member’s website and the user registration date is saved in
user_registered.

Next you will explore the wp_comments table. This table stores all of the comments, pingbacks, and
trackbacks for your website.

Viewing the comment records, you’ll notice the ID fi eld is named comment_ID. Even though this
fi eld is not named ID, it is still the unique identifi er for this record in the table. The comment_post_
ID is the unique ID of the post the comment was added to. Remember that by default you don’t have
to be logged in to make comments in WordPress. For this reason, you’ll see similar fi elds as in your
users table.

The comment_author fi eld stores the name of the commenter. If the comment is a pingback or track-
back, it will contain the name of the post that sent the ping. The comment_author_email contains
the commenter’s e-mail address, and his or her website is stored in comment_author_url. Another
important fi eld is the comment_date, which is the date the comment was created. This fi eld is used
to display your post comments in the correct order.

WordPress Taxonomy Tables

Terms, relationships, and taxonomies are broken into three distinct tables to allow many-to-one
relationships between categories, tags, items in custom taxonomies, and posts. These relationships
are hierarchical and multi-valued. While you could add an array of tag or category identifi ers to
each row in the wp_posts table, for example, that approach puts an explicit limit on the number of
descriptive relationships for each post while also wasting space allocated for tags or categories that
may not be assigned.

If you create a category called “cured ham,” and put four posts in that category, all three taxonomy-
related tables are updated:

 1. One row in the wp_terms table defi nes “cured ham” and its slug, or diminutive form used in
URLs. This relationship gets a unique identifi er (key) useful for matching the term to other
tables.

 2. One row in the wp_term_taxonomy table maps “cured ham” to the “category” taxonomy.
This relationship also gets a unique key, representing the combination of “cured ham” in
“category.” If you also create a custom taxonomy and have a “cured ham” entry in it, there
will be a different row in the wp_term_taxonomy table for that mapping, along with its
unique key.

 3. Four rows in the wp_term_relationships table map the “cured ham in category” identifi er
to the post identifi ers for each of the posts that are in the category.

The workhorse operator in working with taxonomy tables is the SQL JOIN, sometimes referred to
as the “product” of two (or more) tables. A JOIN builds a temporary table with each row in one

c06.indd 105c06.indd 105 12/6/12 1:29 AM12/6/12 1:29 AM

106 ❘ CHAPTER 6 DATA MANAGEMENT

table mapped to every row in the second and successive tables; then the WHERE part of a JOIN opera-
tion selects those rows where specifi c fi elds in each row match. To fi nd all of the posts in the “cured
ham” category, WordPress fi rst fi nds the identifi er for this term and taxonomy pair, selects the
appropriate rows from the wp_term_relationships table, and then does a JOIN on the wp_posts
and the selected rows from the relationships table: that last JOIN is SQL-ese for “extract all of the
posts with identifi ers in this list” where the list is computed on-the-fl y.

Figure 6-2 shows a graphical representation of the joins between the wp_posts table and taxonomy
tables in WordPress.

FIGURE 6-2: Taxonomy tables relationship

While this makes the SQL for selecting content associated with a particular tag or category more
complex, requiring the use of a multi-table JOIN operations to implement the “name in a taxonomy
in a relationship” matching, it is powerful in allowing content to be given rich and multi-valued
descriptions, and for category, taxonomy, and tag names to have independent name spaces.

WORDPRESS DATABASE CLASS

WordPress features an object class with method functions for working with the database directly.
This database class is called wpdb and is located in wp-includes/wp-db.php. Any time you are
querying the WordPress database in PHP code, you should use the wpdb class. The main reason for
using this class is to allow WordPress to execute your queries in the safest way possible.

Simple Database Queries

When using the wpdb class, you must fi rst defi ne $wpdb as a global variable before it will be available
for use. To do so, just drop this line of code directly preceding any $wpdb function call:

global $wpdb;

One of the most important functions in the wpdb class is the prepare() function. This function is
used for escaping variables passed to your SQL queries. This is a critical step in preventing SQL
injection attacks on your website. All queries should be passed through the prepare function before
being executed. Here’s an example:

c06.indd 106c06.indd 106 12/6/12 1:29 AM12/6/12 1:29 AM

WordPress Database Class ❘ 107

<?php
$field_key = "address";
$field_value = "123 Elm St";
$wpdb->query($wpdb->prepare("INSERT INTO $wpdb->my_custom_table
 (id, field_key, field_value) VALUES (%d, %s, %s)", 1,
 $field_key, $field_value));

?>

This example adds data into a non-default, custom table in WordPress that you would have previ-
ously created. When using prepare(), make sure to replace any variables in your query with %s
for strings and %d for integers. Then list the variables as parameters for the prepare() function
in the exact same order. In the preceding example, %d represents 1, %s represents $field_key, and
the second %s represents $field_value. The prepare function is used on all queries from here
on out.

Notice that this example uses $wpdb->my_custom_table to reference the table in WordPress. This
translates to wp_my_custom_table if wp_ is the table prefi x. This is the proper way to determine the
correct table prefi x when working with tables in the WordPress database.

NOTE When installing WordPress, you can set a custom database table prefi x.
By default, this is wp_, but many people choose to change this prefi x for security
purposes. Using $wpdb-> is the correct way to determine what this table prefi x is
for any WordPress installation.

The wpdb query() method is used to execute a simple query. This function is primarily used for
SELECT and DELETE statements. Despite its name, it’s not only for SQL SELECT queries, but will
execute any SQL statement against the database. Here’s a basic query function example:

<?php
$wpdb->query($wpdb->prepare(" DELETE FROM $wpdb->my_custom_table WHERE
id = '1' AND field_key = 'address' "));

?>

As you can see, you execute your query using the wpdb class query() function to delete the field
"address" with an ID of 1. Although the query() function allows you to execute any SQL query
on the WordPress database, other database object class functions are more appropriate for SELECT
queries. For instance, the get_var() function is used for retrieving a single variable from the
database:

<?php
global $wpdb;
$comment_count = $wpdb->get_var($wpdb->prepare("SELECT COUNT(*)
 FROM $wpdb->comments;"));
echo '<p>Total comments: ' . $comment_count . '</p>';
?>

c06.indd 107c06.indd 107 12/6/12 1:29 AM12/6/12 1:29 AM

108 ❘ CHAPTER 6 DATA MANAGEMENT

This example retrieves a count of all comments in WordPress and displays the total number.
Although only one scalar variable is returned, the entire result set of the query is cached. It’s best
to try and limit the result set returned from your queries using a WHERE clause to only retrieve the
records you actually need. In this example, all comment record rows are returned, even though you
display the total count of comments. This would obviously be a big memory hit on larger websites.

Complex Database Operations

To retrieve an entire table row, you’ll want to use the get_row() function. The get_row() function
can return the row data as an object, an associative array, or a numerically indexed array. By default,
the row is returned as an object, in this case an instance of the per-post data. Here’s an example:

<?php
$thepost = $wpdb->get_row($wpdb->prepare("SELECT *
 FROM $wpdb->posts WHERE ID = 1"));
echo $thepost->post_title;
?>

This retrieves the entire row data for post ID 1 and displays the post title. The properties of $the-
post object are the column names from the table you queried, which is wp_posts in this case. To
retrieve the results as an array, you can send in an additional parameter to the get_row() function:

<?php
$thepost = $wpdb->get_row($wpdb->prepare("SELECT *
 FROM $wpdb->posts WHERE ID = 1"), ARRAY_A);
print_r ($thepost);
?>

By using the ARRAY_A parameter in get_row(), your post data is returned as an associative array.
Alternatively, you could use the ARRAY_N parameter to return your post data in a numerically
indexed array.

Standard SELECT queries should use the get_results() function for retrieving multiple rows of
data from the database. The following function returns the SQL result data as an array:

<?php
$liveposts = $wpdb->get_results($wpdb->prepare("SELECT ID, post_title
 FROM $wpdb->posts WHERE post_status = 'publish' "));

foreach ($liveposts as $livepost) {
 echo '<p>' .$livepost->post_title. '</p>';
}
?>

The preceding example is querying all published posts in WordPress and displaying the post titles. The
query results are returned and stored as an array in $liveposts, which you can then loop through to
display your query values.

The WordPress database class also features specifi c functions for UPDATE and INSERT statements.
These two functions eliminate the need for custom SQL queries because WordPress will create

c06.indd 108c06.indd 108 12/6/12 1:29 AM12/6/12 1:29 AM

WordPress Database Class ❘ 109

them for you based on the values passed into the function. Here is how the insert() function is
structured:

$wpdb->insert($table, $data);

The $table variable is the name of the table you want to insert a value into. The $data variable is
an array of fi eld names and data to be inserted into those fi eld names. So, for example, if you want
to insert data into a custom table, you would execute this:

<?php
$newvalueone = 'Hello World!';
$newvaluetwo = 'This is my data';
$wpdb->insert($wpdb->my_custom_table, array('field_one' => $newvalueone,
 'field_two' => $newvaluetwo));

?>

The fi rst thing you do is set two variables to store the data you want to insert. Next, you execute the
insert() function, passing in both variables through an array. Notice how you set field_one and
field_two as the two fi elds you are inserting. You can pass any fi eld available in the table you are
inserting with data to insert into that fi eld.

The update() function works very similarly to the insert() function, except you also need to set
the WHERE clause variable so WordPress knows which records to update:

$wpdb->update($table, $data, $where);

The $where variable is an array of fi eld names and data for the SQL WHERE clause. This is nor-
mally set to the unique ID of the fi eld you are updating, but can also contain other fi eld names
from the table.

<?php
$newtitle = 'My updated post title';
$newcontent = 'My new content';
$my_id = 1;
$wpdb->update($wpdb->posts, array('post_title' => $newtitle,
 'post_content' => $newcontent), array('ID' => $my_id));
?>

First you set your updated title and content variables. You also set the variable $my_id, which con-
tains the ID of the post you want to update. Next, you execute the update() function. Notice that
the third parameter you send is an array containing your WHERE clause values, in this case the post
ID. The preceding query updates the title and content for post ID 1. Remember that you can send
multiple values through the WHERE parameter when updating a table record.

The insert() and update() functions shown do not need to be wrapped with the prepare()
 function. Both of these functions actually use the prepare() function after concatenating the query
from the values passed to the functions. This is a much easier method than manually creating your
INSERT and UPDATE queries in WordPress.

c06.indd 109c06.indd 109 12/6/12 1:29 AM12/6/12 1:29 AM

110 ❘ CHAPTER 6 DATA MANAGEMENT

Dealing with Errors

Any time you are working with queries, it’s nice to see error messages. By default, if a custom query
fails, nothing is returned so it’s hard to determine what is wrong with your query. The wpdb class
provides functions for displaying MySQL errors to the page. Here’s an example of using these
functions:

<?php
$wpdb->show_errors();
$liveposts = $wpdb->get_results($wpdb->prepare("SELECT ID, post_title
 FROM $wpdb->posts_FAKE WHERE post_status = 'publish'"));
$wpdb->print_error();
?>

The show_errors() function must be called directly before you execute a query. The print_
error() function must be called directly after you execute a query. If there are any errors in your
SQL statement, the error messages are displayed. You can also call the $wpdb->hide_errors()
function to hide all MySQL errors, or call the $wpdb->flush() function to delete the cached query
results.

The database class contains additional variables that store information about WordPress queries.
Following is a list of some of the more common variables:

var_dump($wpdb->num_queries); // total number of queries ran
var_dump($wpdb->num_rows); // total number of rows returned by the last query
var_dump($wpdb->last_result); // most recent query results
var_dump($wpdb->last_query); // most recent query executed
var_dump($wpdb->col_info); // column information for the most recent query

Add the preceding code directly after you execute a query to see the results. This is very useful when
determining why a database query isn’t working as expected.

Another very powerful database variable is the $queries variable. This stores all of the queries run
by WordPress. To enable this variable, you must fi rst set the constant value SAVEQUERIES to true in
your wp-config.php fi le. This tells WordPress to store all of the queries executed on each page load
in the $queries variable. First drop this line of code in your wp-config.php fi le:

define('SAVEQUERIES', true);

Now all queries will be stored in the $queries variable. You can display all of the query informa-
tion like so:

var_dump($wpdb->queries); // displays all queries executed during page load

This is especially handy when troubleshooting slow load times. If a plugin is executing an obscene
number of queries, that can dramatically slow down load times in WordPress. Remember to disable
the SAVEQUERIES constant option when you are fi nished viewing queries because storing all queries
can also slow down load times.

c06.indd 110c06.indd 110 12/6/12 1:29 AM12/6/12 1:29 AM

Direct Database Manipulation ❘ 111

The database query class is a major asset when working with the WordPress database directly, as you
will see when developing a plugin or building a more complex Loop. All of the previously mentioned
database class functions use specifi c escaping techniques to verify that your queries are executed in
the safest manner possible. To borrow from Randall Munroe’s “Little Bobby Tables” xkcd joke (xkcd
#327), you don’t want a user handcrafting an input item that contains DROP TABLES as a malicious
SQL injection, resulting in the loss of your WordPress database tables. The query preparation and
escaping functions ensure that inputs don’t become SQL functions, no matter how craftily they’re set
up. It is essential that you follow these methods for querying data to ensure your website is the most
effi cient and uses the safest techniques possible.

DIRECT DATABASE MANIPULATION

There may be times when you want to work with the WordPress database data directly. This can
include accessing custom database tables created by a plugin or theme. To do this, you’ll need to
use SQL to query the data from the MySQL database. Remember that the WordPress APIs provide
access to all of the WordPress tables and only very occasionally will you need to access the tables
directly. All example queries in this chapter use the wp_ prefi x for tables, but your database tables
may use a different prefi x as defi ned in your wp-config.php fi le when installing WordPress.

One of the most common methods for working with a WordPress database directly is by using php-
MyAdmin, shown in Figure 6-3. As described in Chapter 3, phpMyAdmin is a free software tool
provided by most hosting companies for administering MySQL databases through a web interface.
Most of the examples in this section involve direct interaction with MySQL, and you’ll need to
use an SQL command line for their execution. Figure 6-3 shows the default database view using
phpMyAdmin.

FIGURE 6-3: phpMyAdmin viewing a WordPress database

To run SQL statements in phpMyAdmin simply click the SQL tab across the top. Here you can
execute any queries against your WordPress database. We always recommend creating your query
directly in phpMyAdmin fi rst before moving it over to your PHP scripts. The reasoning behind this
is that debugging SQL statements is much faster directly in phpMyAdmin than it is using PHP code
in WordPress. Once you have perfected your query, you can use it in your PHP code and you can

c06.indd 111c06.indd 111 12/6/12 1:29 AM12/6/12 1:29 AM

112 ❘ CHAPTER 6 DATA MANAGEMENT

be confi dent the results will be as expected. In the examples that follow you’ll be using raw SQL
 queries. Remember that if you want to run these queries in a theme or plugin, you’ll need to wrap
the queries in the WordPress database class.

One of the most commonly accessed tables is the wp_posts table. Remember that this table stores
all posts, pages, custom post types, revisions, and even attachment records. The different types of
content are defi ned by the post_type fi eld. WordPress 2.9 introduced the ability for developers to
defi ne custom post types, which is discussed in greater detail in Chapter 7. This means that addi-
tional post_type values may exist in this fi eld. To view all post revisions in your database, you can
run this query:

SELECT * FROM wp_posts
WHERE post_type = 'revision'

This returns all records in wp_posts that are of a revision post_type. You can modify the preced-
ing query to view all post attachments that have been uploaded to WordPress:

SELECT guid, wp_posts.* FROM wp_posts
WHERE post_type = 'attachment'

This example places the fi eld guid as the fi rst value to be returned in the query. The guid fi eld con-
tains the full URL of the attachment fi le on the server.

The wp_options table contains all of the settings saved for your WordPress installation. Options
saved in this table are saved with an option_name and option_value. Therefore, the actual fi eld
name you call will always be those two names, rather than a specifi c fi eld based on the option value.
Following are two extremely important records in this table:

SELECT * FROM wp_options
WHERE option_name IN ('siteurl','home')

This query returns two records, one where option_name is home and another where option_name is
siteurl. These are the two settings that tell WordPress what the domain of your website is. If you
ever need to change your website’s domain, you can run a query to update these two values like so:

UPDATE wp_options
SET option_value = 'http://yournewdomain.com'
WHERE option_name IN ('siteurl','home')

Once this query runs, your website will instantly run under the new domain. Remember that this
only updates the website’s domain in WordPress. Attachment URLs in posts and pages will also
need to be updated to point to the new domain. Plugins can also store the domain information, so
be sure to test in a development environment before updating a production website. If you access
the old domain, you will be redirected to the new one. If you were logged in, your cookies and ses-
sion will be invalidated and you will have to log in again. This is a great technique if you built a new
website under a subdomain (for example, http://new.example.com) and are updating the URLs to
push the website live.

c06.indd 112c06.indd 112 12/6/12 1:29 AM12/6/12 1:29 AM

http://yournewdomain.com
http://new.example.com

Direct Database Manipulation ❘ 113

The wp_options table contains other very important fi elds. To view all active plugins on your web-
site, you can view the active_plugins option_name like so:

SELECT *
FROM wp_options
WHERE option_name = 'active_plugins'

The options table also stores all options defi ned by plugins. Most plugins activated in WordPress
will have some type of settings page. These settings are generally saved in wp_options so the
plugins can retrieve these settings as needed. For example, the Akismet plugin stores an option
named akismet_spam_count that stores the total number of spam comments. You can view this
option by running the following query:

SELECT * FROM wp_options
WHERE option_name = 'akismet_spam_count'

The wp_users table contains all of the users you currently have set up in WordPress. If you allow
open registration on your website, new users will be created in this table as they join your site.
The wp_users table stores very important user information including username, password, e-mail,
 website URL, and date registered. Say you want to export all of your users’ e-mail addresses. You
can easily do so by running the following query:

SELECT DISTINCT user_email
FROM wp_users

Now you can easily export all of the e-mail addresses loaded into WordPress! Another common
query used in wp_users is to reset a user’s password. You can do this in a couple of different ways,
but if you are absolutely locked out of WordPress, you can always reset the password directly in the
database. To do so, you need to update the user_pass fi eld from the MySQL command line:

UPDATE wp_users
SET user_pass = MD5('Hall0w33n')
WHERE user_login ='admin'
LIMIT 1;

Running this query resets the admin password to Hall0w33n. Notice how you wrap the new
 password in MD5(). This converts the password to an MD5 hash. Since WordPress 2.5, passwords
are now salted and hashed using the phpass encryption library rather than MD5. Not to worry,
however, because WordPress is built to detect MD5 hash passwords and convert them to phpass
encryption instead. So the preceding query will successfully reset your password in WordPress.

The wp_comments table stores all comments submitted to your website. This table contains the com-
ment, author, e-mail, website URL, IP address, and more. Here’s an example query for displaying
comments:

SELECT wc.* FROM wp_posts wp
INNER JOIN wp_comments wc ON wp.ID = wc.comment_post_ID
WHERE wp.ID = '1554'

c06.indd 113c06.indd 113 12/6/12 1:29 AM12/6/12 1:29 AM

114 ❘ CHAPTER 6 DATA MANAGEMENT

This query returns all comments for post ID 1554. Another important fi eld in wp_comments is the
user_id fi eld. If a user is logged in to your website and posts a comment, this fi eld will contain his
or her user ID. Consider the following code, which displays all comments left by the user admin:

SELECT wc.* FROM wp_comments wc
INNER JOIN wp_users wu ON wc.user_id = wu.ID
WHERE wu.user_login = 'admin'

In the database diagram in Figure 6-1, the arrows show the relationships between each table. This
is incredibly useful when writing custom queries to retrieve data directly from the database. For
example, to retrieve all comments for a particular post you could run this query:

SELECT * FROM wp_comments
INNER JOIN wp_posts ON wp_comments.comment_post_id = wp_posts.ID
WHERE wp_posts.ID = '1'

This query returns all comments for post ID 1. Notice how you join the wp_comments.comment_
post_ID fi eld to the wp_posts.ID fi eld. The SQL JOIN is necessary because there is an N:1 relationship
between comments and posts; each post may have many comments but comments apply to only one
post. These two fi elds are shown in the diagram as the joining fi elds for these tables. Also consider the
following example, which demonstrates how to join the wp_users and wp_usermeta tables together:

SELECT * FROM wp_users
INNER JOIN wp_usermeta ON wp_users.ID = wp_usermeta.user_id
WHERE wp_users.ID = '1'

As you can see in the database diagram, the wp_users.ID fi eld was joined to the wp_usermeta
.user_id fi eld. The preceding query retrieves all of the user information, including user metadata,
for user ID 1, which is the default admin account. Again, the database diagram makes it extremely
easy to determine how tables are joined by index value inside the WordPress database, and how
logical INNER JOIN operations can build result sets of related table rows.

If you are interested in learning more about SQL, you can read some amazing tutorials at
http://www.w3schools.com/sql/default.asp.

SUMMARY

This chapter covered the WordPress database schema, database table relationships, the WordPress
database class, and the proper way to debug database queries. Whether working with themes,
plugins, or custom functions, understanding how to work with the WordPress database is very
important. Understanding where and how WordPress stores data in the database can help as you
develop more complex website features.

Next you’ll cover custom content in WordPress using custom post types. You’ll also cover custom
taxonomies, custom metadata, and the power and importance of both when developing WordPress
websites.

c06.indd 114c06.indd 114 12/6/12 1:29 AM12/6/12 1:29 AM

http://www.w3schools.com/sql/default.asp

Custom Post Types, Custom
Taxonomies, and Metadata

WHAT’S IN THIS CHAPTER?

 ➤ Understanding and creating custom post types

 ➤ Displaying and using custom post type content

 ➤ Creating and using custom taxonomies

 ➤ Understanding and using metadata

The most important part of any WordPress website is the content. WordPress, by default, has
various types of content and taxonomies defi ned, but often, you will need to defi ne your own
types of content to build the exact website you want.

Over the past few years, WordPress has introduced some very advanced, and easy-to-use, tools
for working with all sorts of custom content. This has helped WordPress evolve into a full-
fl edged content management system capable of powering absolutely any type of website setup,
regardless of the content.

In this chapter, you learn how to create custom post types and content in WordPress. You
also learn how to work with custom taxonomies to group and classify your content. Finally,
you learn how to attach and retrieve arbitrary pieces of metadata to your content.

UNDERSTANDING DATA IN WORDPRESS

When working with various types of data in WordPress, it’s important to understand what
that data is and how it can be customized. WordPress has fi ve predefi ned post types in a
default installation:

 1. Post — Blog posts or articles generally ordered by date

 2. Page — Hierarchical static pages of content

7

c07.indd 115c07.indd 115 12/6/12 1:31 AM12/6/12 1:31 AM

116 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

 3. Attachment — Media uploaded to WordPress and attached to post type entries, such as
images and fi les

 4. Revision — A revision of a post type used as backup and can be restored if needed

 5. Nav Menus — Menu items added to a nav menu using WordPress’ menu management feature

For a basic blog or smaller website, these default post types are all you might need. However, if you
plan on building a more complex CMS-type website, you’ll want to utilize the power of custom post
types.

What Is a Custom Post Type?

A custom post type in WordPress is a custom defi ned piece of content. Using custom post types, you
can defi ne any type of content in WordPress, and you are no longer forced to use just the default
post types listed in the previous section. This opens to door to an endless number of possibilities.

Potential custom post type ideas include, but are not necessarily limited to, the following:

 ➤ Products

 ➤ Events

 ➤ Videos

 ➤ Rotator

 ➤ Testimonials

 ➤ Quotes

 ➤ Error Log

Remember that custom post types can be absolutely anything, not just public-facing pieces of
content. For example, you can set up a custom post type as an error log to track errors in your
application. When it comes to custom post types, the only limitation is your imagination.

Register Custom Post Types

To create a new custom post type, you’ll use the register_post_type() function as shown here:

<?php register_post_type($post_type, $args); ?>

The register_post_type() function accepts two parameters:

 1. $post_type — The name of the post type. Should contain only lowercase letters, no spaces,
and a max length of 20 characters.

 2. $args — An array of arguments that defi ne the post type and various options in WordPress.

Now look at a basic example of registering a custom post type. You can register a post type in
WordPress in two different places. The fi rst is in your theme’s functions.php fi le. The second is in
a custom plugin. You could add the following code to a custom plugin, but for this example, add the
following code to your theme’s functions.php fi le.

<?php
add_action('init', 'prowp_register_my_post_types');

c07.indd 116c07.indd 116 12/6/12 1:31 AM12/6/12 1:31 AM

Understanding Data in WordPress ❘ 117

function prowp_register_my_post_types() {

 register_post_type('products',
 array(
 'labels' => array(
 'name' => 'Products'
),
 'public' => true,
)
);

}
?>

Now visit your WordPress admin dashboard. You’ll notice that a new menu
called Products has appeared just below Comments, as shown in Figure 7-1.
That is the new custom post type you just registered with the preceding code.

As you can see, WordPress will automatically create the admin UI for your
new custom post type. The new menu item allows you to create new post type
product entries as well as edit existing entries, just like posts and pages in
WordPress. This is a basic example, but you can already tell the ease with which
you can defi ne custom content in WordPress.

NOTE You should always use the init action hook when registering your
custom post types. This is the fi rst hook available after WordPress is fully
initialized and will verify that your custom post type is registered early enough in
the process.

There are many different arguments available when registering your custom post type. It’s important
to understand these arguments to know what’s available.

public

Sets whether a post type is publicly available on the admin dashboard or front-end of your website.
By default, this is set to false, which will hide the post type from view. The default settings for
show_ui, exclude_from_search, publicly_queryable, and show_in_nav_menus are inherited
from this setting.

show_ui

This determines whether or not to create a default UI in the WordPress admin dashboard for
managing this post type. It defaults to the value defi ned by the public argument.

publicly_queryable

This determines if the post type content can be publicly queried on the front end of your website.
If it is set to false, all front end queries for entries under the custom post type will return a 404,
since it is not allowed to be queried. It defaults to the value defi ned by the public argument.

FIGURE 7-1: Products

custom post type

c07.indd 117c07.indd 117 12/6/12 1:31 AM12/6/12 1:31 AM

118 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

exclude_from_search

This allows you to exclude custom post type entries from the WordPress search results. It defaults to
the value defi ned by the public argument.

show_in_nav_menus

This determines if the post type is available for selection in the menu management feature of
WordPress. It defaults to the value defi ned by the public argument.

supports

This argument allows you to defi ne what meta boxes appear on the screen when creating or editing
a new post type entry. This defaults to the title and editor. Several options are available:

 ➤ title — Sets the post title.

 ➤ editor — Displays the content editor on the post editing screen with a media uploader.

 ➤ author — Selects box to choose the author of the post.

 ➤ thumbnail — Featured image meta box for the post.

 ➤ excerpt — Displays an excerpt editor on the post type editing screen.

 ➤ comments — Sets whether comments will be enabled for posts of this type.

 ➤ trackbacks — Sets whether trackbacks and pingbacks will be enabled for posts of this type.

 ➤ custom-fields — Displays the custom fi eld editing area meta box.

 ➤ page-attributes — Displays the attributes box for choosing the post order. The
hierarchical argument must be set to true for this to work.

 ➤ revisions — Displays the post revisions meta box.

 ➤ post-formats — Displays the post formats meta box with registered post formats.

labels

This sets an array of labels that represents your post type in the admin dashboard. See the section,
“Setting Post Type Labels,” later in this chapter for details on each label.

hierarchical

The hierarchical argument allows you to defi ne if the post type is hierarchical, like pages in
WordPress. A hierarchical post type allows you to have a tree-like structure for your post type
content. By default, this argument is set to false.

has_archive

This enables your post type to have an archive page. A post type archive page is like the WordPress
posts page, which displays the site’s latest blog entries. This allows you to display a list of your post
type entries, with the order being defi ned in your theme’s template fi le.

c07.indd 118c07.indd 118 12/6/12 1:31 AM12/6/12 1:31 AM

Understanding Data in WordPress ❘ 119

can_export

This determines if the post type content is available for export using the built-in WordPress export
feature under Tools ➪ Export. This argument is set to true by default.

taxonomies

This names an array of registered taxonomies to attach to the custom post type. For example, you
can pass in category and post_tag to attach the default Categories and Tags taxonomies to your
post type. By default, there are no taxonomies attached to a custom post type.

menu_position

This enables you to set the position in which the custom post type menu shows in the admin menu.
By default, new post types are displayed after the Comments menu.

menu_icon

This sets a custom menu icon for your post type. By default, the posts icon is used.

show_in_menu

This determines whether or not to display the admin menu for your post type. This argument
accepts three values: true, false, or a string. The string can be either a top-level page, such as
tools.php, or edit.php?post_type=page. You can also set the string to the menu_slug parameter
to add the custom post type as a submenu item to an existing custom menu. It defaults to the value
defi ned by the show_ui argument.

show_in_admin_bar

This sets whether or not to show your custom post type in the WordPress admin bar. It defaults to
the value defi ned by the show_in_menu argument.

capability_type

This names a string or an array of the capabilities for this post type. By default, the value is set to
post.

capabilities

This is an array of custom capabilities required for editing, deleting, viewing, and publishing posts
of this post type.

query_var

This argument sets the query variable for posts of this post type. The default value is true and is set
to the $post_type value.

c07.indd 119c07.indd 119 12/6/12 1:31 AM12/6/12 1:31 AM

120 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

rewrite

The rewrite argument creates the unique permalinks for this post type. This allows you to
customize the post type slug in your URL. This argument can be set to true, false, or an array of
values. If passing an array, it accepts the following values:

 ➤ slug — Sets a custom permalink slug. Defaults to the $post_type value.

 ➤ with_front — Sets whether your post type should use the front base from your permalink
settings. For example, if you prefi xed your permalinks with /blog, and with_front is set to
true, your post type permalinks would include /blog at the beginning.

 ➤ pages — Sets whether the permalink provides for pagination. Defaults to true.

 ➤ feeds — Sets whether a feed permalink will be built for this post type. Defaults to
has_archive value.

By default this argument is set to true and the $post_type is used as the slug.

This section has covered a lot of custom post type arguments. The following example puts some of
the more common arguments to use.

<?php
add_action('init', 'prowp_register_my_post_types');

function prowp_register_my_post_types() {

 $args = array(
 'public' => true,
 'has_archive' => true,
 'taxonomies' => array('category'),
 'rewrite' => array('slug' => 'product'),
 'supports' => array('title', 'editor', 'author', 'thumbnail', 'comments')
);

 register_post_type('products', $args);

}
?>

In this example, you fi rst set the post type to be public. You also enabled the post type to have an
archive page by setting the has_archive argument to true. Using the taxonomies argument, you
attached the default Category taxonomy to your product’s custom post type.

In this example, you want to change the permalink slug for your post type. Instead of http://
example.com/products/zombie-bait, using the default slug products from the post type name,
you want to set your post type slug to the singular product. This will generate your permalink
as http://example.com/product/zombie-bait. This is done using the rewrite argument and
defi ning a custom slug for your post type. The fi nal argument you set is supports. The code adds
the title, editor, author, featured image, and comments meta box to your custom post type create
and edit screens.

c07.indd 120c07.indd 120 12/6/12 1:31 AM12/6/12 1:31 AM

http://example.com/products/zombie-bait
http://example.com/products/zombie-bait
http://example.com/product/zombie-bait

Understanding Data in WordPress ❘ 121

NOTE When registering a new custom post type, it’s important to fl ush the
rewrite rules in WordPress. You can do this by calling the function flush_
rewrite_rules() in your plugin’s activation hook or manually by going to
Settings ➪ Permalinks and saving your permalink settings. This will eliminate
404 errors on your new post type permalinks.

To learn more about the register_post_type() function, visit the offi cial Codex page at http://
codex.wordpress.org/Function_Reference/register_post_type.

Setting Post Type Labels

When creating a custom post type in WordPress, several text strings are shown throughout the
WordPress admin dashboard for your post type. These text strings are typically a link, button, or
extra information about the post type. By default, the term “post” is used for non-hierarchical post
types and “page” for hierarchical post types.

For example, when you use the basic custom post type registration code earlier in this chapter, you’ll
notice the text “Add New Post” at the top of the page when you add a new Product. The reason
for this is Product is a post of type Product. This isn’t very accurate, as you aren’t actually adding
a post, but rather a new Product. Setting the labels argument when registering your custom post
type will allow you to defi ne exactly what is shown.

The available labels for your custom post types include:

 ➤ name — General name for the post type, which is usually plural. Used in the WordPress
admin and by other plugins and themes.

 ➤ singular_name — The singular version of the name for the post type. It is also used in the
WordPress admin and by other plugins and themes.

 ➤ add_new — The label for the Add New submenu item. The text defaults to “Add New.”

 ➤ add_new_item — Used as the header text on the main post listing page to add a new post.
By default, the text is “Add New Post/Page.”

 ➤ edit_item — Used as the text for editing an individual post. Defaults to “Edit Post/Page.”

 ➤ new_item — Text for creating a new post. By default, it is set to “New Post/Page.”

 ➤ view_item — The text for viewing an single post entry. Defaults to “View Post/Page.”

 ➤ search_items — Text displayed for searching the posts of this type. It defaults to “Search
Posts/Pages.”

 ➤ not_found — The text shown when no posts were found in a search. By default, it displays
“No posts/pages found.”

 ➤ not_found_in_trash — The text shown when no posts are in the trash. Defaults to “No
posts/pages found in Trash.”

 ➤ parent_item_colon — Text shown when displaying a post’s parent. This text is only used
with hierarchical post types and displays “Parent Page:” by default.

c07.indd 121c07.indd 121 12/6/12 1:31 AM12/6/12 1:31 AM

http://codex.wordpress.org/Function_Reference/register_post_type
http://codex.wordpress.org/Function_Reference/register_post_type

122 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

Setting each value makes for a much better user experience when administering a WordPress
website. In the following code, you’ve modifi ed your original custom post type registration code and
set the labels for the Product post type:

<?php
add_action('init', 'prowp_register_my_post_types');

function prowp_register_my_post_types() {

 $labels = array(
 'name' => 'Products',
 'singular_name' => 'Product',
 'add_new' => 'Add New Product',
 'add_new_item' => 'Add New Product',
 'edit_item' => 'Edit Product',
 'new_item' => 'New Product',
 'all_items' => 'All Products',
 'view_item' => 'View Product',
 'search_items' => 'Search Products',
 'not_found' => 'No products found',
 'not_found_in_trash' => 'No products found in Trash',
 'parent_item_colon' => '',
 'menu_name' => 'Products'
);

 $args = array(
 'labels' => $labels,
 'public' => true
);

 register_post_type('products', $args);

}
?>

Working with Custom Post Types

Now that you understand how to register a custom post type, let’s explore how you use them
in your WordPress website. Typically it’s the job of your theme to display posts on the front end of
your site. However, that may not always be the case as certain custom post types may not need to
be publicly displayed — for example, an error log. It all depends on what the function of your post
type is.

To display custom post type data, you can use the WP_Query custom Loop example from Chapter 5.
Remember that WP_Query accepts a post_type parameter that determines what type of content to
return. In the example that follows, you’ll return all of your product entries in WordPress:

$args = array(
 'posts_per_page' => '-1',
 'post_type' => 'products',

c07.indd 122c07.indd 122 12/6/12 1:31 AM12/6/12 1:31 AM

Understanding Data in WordPress ❘ 123

);

$myProducts = new WP_Query($args);

// The Loop
while ($myProducts->have_posts()) : $myProducts->the_post();
 ?><a href="<?php the_permalink(); ?>"><?php the_title(); ?>
<?php
endwhile;

// Reset Post Data
wp_reset_postdata();

Notice the post_type parameter is set to products, which is the $post_type parameter value used
when you registered the Products custom post type.

Now modify the custom Loop to return only products in the Specials category:

$args = array(
 'posts_per_page' => '-1',
 'post_type' => 'products',
 'tax_query' => array(
 array(
 'taxonomy' => 'category',
 'field' => 'slug',
 'terms' => 'specials'
)
)
);

$myProducts = new WP_Query($args);

Using the tax_query parameter in WP_Query, the custom Loop will return only product post type
entries assigned to the Specials category.

You can use all of the same methods for creating custom Loops with WP_Query, as covered in detail
in Chapter 5, to display your custom post type content. It’s easy to see the power custom post types
bring to WordPress when developing more complex websites.

Custom Post Type Template Files

Earlier in the chapter you learned about the has_archive argument when registering a custom
post type. Enabling this argument will allow you to create an archive template fi le that will display
all of your custom post type entries by default. The archive template for a custom post type must
be named in the form of archive-{post-type}.php. For example, an archive template for your
Products custom post type would be named archive-products.php. This archive template is a
perfect place to display all of your products.

Just like the archive template, WordPress will also recognize a single template for your post type
entries. This is the template that is loaded when you visit a single entry for your custom post type.

c07.indd 123c07.indd 123 12/6/12 1:31 AM12/6/12 1:31 AM

124 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

The single template must be named in the form of single-{posttype}.php. So your products
single template would be named single-products.php. When visiting a single product URL,
such as http://example.com/products/zombie-bait, the single-products.php template
would load.

Theme template fi les, including custom post types, are covered in more detail in Chapter 9.

Special Post Type Functions

WordPress features many different post type–specifi c functions to make working with custom post
types that much easier. In this section, you will review some of the more common functions you
might use when building your websites.

To return a list of all registered post types in WordPress, you’ll use the get_post_types() function.

<?php get_post_types($args, $output, $operator); ?>

This function accepts three optional parameters:

 1. $args — An array of arguments to match against the post type.

 2. $output — The type of output to return, either names or objects. Defaults to names.

 3. $operator — Operator to use with multiple $args. Defaults to and.

Using the get_post_types() function, use the following to return a list of all custom post types
registered in WordPress:

$args = array(
 'public' => true,
 '_builtin' => false
);

$post_types = get_post_types($args, 'names', 'and');

foreach ($post_types as $post_type) {
 echo '<p>'. $post_type. '</p>';
}

As shown in the preceding code, you’ll set two arguments in the $args array: public and _
builtin. The public argument will only return custom post types that are set to be publicly
viewable. The _builtin argument is set to false, which will not return default post types like posts
and pages. You also set the $output argument to return just the post type name, and the $operator
argument to use “and” for the multiple $args you passed to the function.

To determine what post type a piece of content is, you’ll use the get_post_type() function:

<?php get_post_type($post); ?>

This function accepts only one parameter — $post — which is a post object or a post ID.

c07.indd 124c07.indd 124 12/6/12 1:31 AM12/6/12 1:31 AM

http://example.com/products/zombie-bait

Understanding Data in WordPress ❘ 125

You can display the post type of a post using the following code:

<?php echo 'The post type is: '.get_post_type($post->ID); ?>

There may be a time when you want to work with a custom post type that was created by a plugin
or theme. The fi rst thing you should always do is to verify that the custom post type you are looking
for exists. To do so, you’ll use the post_type_exists() function.

<?php post_type_exists($post_type); ?>

The function accepts a single required parameter — $post_type — which is the post type you want
to verify has been registered.

If you wanted to verify the products custom post type exists, you use this code:

if(post_type_exists('products')) {
 echo 'The Products post type exists';
}

Another useful function when working with other custom post types is add_post_type_support().
This function allows you to register support for certain features on a post type, such as the featured
image meta box.

<?php add_post_type_support($post_type, $supports) ?>

This is a useful function if the existing post type doesn’t have support for a feature that you need.
The add_post_type_support() function accepts two parameters:

 1. $post_type — The post type name you are adding support to

 2. $supports — A string or array of features to add

As an example, assume the products post type does not support featured images or comments. To
add support for both of these features, use the following code example:

add_post_type_support('products', array('thumbnail', 'comments'));

This function is very useful if you need to work with a custom post type that is defi ned in a separate
plugin or theme. Rather than hacking the registration code in that plugin or theme, you can use the
add_post_type_support() function to enable any feature needed for your code to work.

WordPress also features a function to change the post type of a post entry. You can do so by using
the set_post_type() function.

<?php set_post_type($post_id, $post_type); ?>

The function accepts two parameters:

 1. $post_id — The ID of the post you want to update. This fi eld is required.

 2. $post_type — The post type name to change the post to. This is an optional fi eld and
defaults to post.

c07.indd 125c07.indd 125 12/6/12 1:31 AM12/6/12 1:31 AM

126 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

WORDPRESS TAXONOMY

Taxonomy is defi ned as a way to group similar items together. This basically adds a relational
dimension to your website’s content. In the case of WordPress, you use categories and tags
to group your posts. By grouping these posts, you are defi ning the taxonomy of those posts.
Taxonomy can be hierarchical (that is, categories and subcategories), but it is not required as with
the case of tags.

Default Taxonomies

By default, WordPress comes loaded with three taxonomies:

 1. Category — A bucket for grouping similar posts together

 2. Tag — A label attached to a post

 3. Link category — A bucket for grouping similar links together

Categories are hierarchical and defi ned when creating a post. Tags do not use hierarchy and are also
defi ned when creating a post. Link categories are used when grouping similar links together using
the WordPress link manager. All three out-of-the-box taxonomies are available for use in a default
installation of WordPress.

Each category or tag you create is a term of that taxonomy. For example, a category named Music is
a term of the category taxonomy. A tag named Ketchup is a term of the tag taxonomy. Understanding
taxonomy and terms will help you when defi ning your own custom taxonomies in WordPress.

Understanding how you can classify your content using a solid taxonomy structure will make
structuring website content in WordPress much easier from the start. Developing a solid taxonomy
framework enables easy and accurate information access throughout your website.

Taxonomy Table Structure

WordPress features three database tables that store all taxonomy information: wp_terms, wp_term_
relationships, and wp_term_taxonomy. This taxonomy schema, which was added in WordPress
2.3, makes the taxonomy functionality extremely fl exible in WordPress. This means you can create
and defi ne any type of custom taxonomy to use on your website.

The wp_terms table stores all of your taxonomy terms. This can be categories, tags, link
categories, and any custom taxonomy terms you have defi ned. The wp_term_taxonomy table
defi nes what taxonomy each term belongs to. For example, all of your tag IDs will be listed in
this table with a taxonomy value of post_tag. If you created a custom taxonomy, the taxonomy
value would be the name of your custom taxonomy. The wp_term_relationships table is the
cross-reference table that joins taxonomy terms with your content. For example, when you
assign a tag to your post, a new record is created here joining your post ID and the term ID
together.

c07.indd 126c07.indd 126 12/6/12 1:31 AM12/6/12 1:31 AM

WordPress Taxonomy ❘ 127

As you can see, the three taxonomy tables are joined together by unique IDs. The following is a
query to display all posts along with all taxonomy terms assigned to those posts:

SELECT wt.name, wp.post_title, wp.post_date FROM wp_terms wt
INNER JOIN wp_term_taxonomy wtt ON wt.term_id = wtt.term_id
INNER JOIN wp_term_relationships wtr ON wtt.
 term_taxonomy_id = wtr.term_taxonomy_id
INNER JOIN wp_posts wp ON wtr.object_id = wp.ID
WHERE wp.post_type = 'post'

Notice how you are joining on the table fi elds, as depicted in Figure 7-2. The preceding example
returns only three fi elds: the taxonomy term, post title, and post date. This query example returns
all posts in your WordPress database along with all taxonomy terms attached to those posts.

NOTE To learn more about taxonomy table relationships and why WordPress
needs to decompose these multi-valued relationships into multiple tables, see the
WordPress Taxonomy Tables section of Chapter 6: Data Management.

wp_term

term_id BIGINT(20)

name VARCHAR(200)

slug VARCHAR(200)

Indexes

PRIMARY

slug
name

term_group BIGINT(10)

wp_term_relationships

object_id BIGINT(20)

term_taxonomy_id BIGINT(20)

term_order INT(11)

Indexes

PRIMARY

term_taxonomy_id

wp_term_taxonomy

term_taxonomy_id BIGINT(20)

term_id BIGINT(20)

taxonomy VARCHAR(32)

description LONGTEXT

parent BIGINT(20)

count BIGINT(20)

Indexes

PRIMARY

term_id_taxonomy

taxonomy

FIGURE 7-2: WordPress taxonomy table structure

Understanding Taxonomy Relationships

To really understand the relationship between the taxonomy tables, it’s helpful to look at a database
diagram of the taxonomy table structure, as shown in Figure 7-2.

c07.indd 127c07.indd 127 12/6/12 1:31 AM12/6/12 1:31 AM

128 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

BUILDING YOUR OWN TAXONOMIES

Creating your own custom taxonomies has many benefi ts. Imagine running a food blogging
website. When creating new posts, you’ll want to label a certain recipe as Asian, but you also
may want to label the individual ingredients, heat factor, prep time, and so on. Building custom
taxonomies allows you the freedom to defi ne these different methods of categorizing your content
and really expands WordPress from blogging software into a full-fl edged content management
system (CMS).

Custom Taxonomy Overview

With the revamp of the taxonomy schema in WordPress 2.3, you now have the capability to
defi ne custom taxonomies for your content. WordPress makes it easier than ever to create custom
taxonomies, as well as integrate your new taxonomies into WordPress.

WordPress 2.8 added the feature to automatically display a meta box to the post type edit screen for
adding taxonomy terms directly to your posts. WordPress will also create a menu item to access the
new taxonomy admin panel for administering your taxonomy terms.

Creating Custom Taxonomies

Now it’s time to build your fi rst custom taxonomy! You are going to create a simple taxonomy for
defi ning Types for your product custom post type registered earlier in this chapter. If you are selling
Products online, you’ll need a way to group specifi c Product types together. You are going to set up
a custom taxonomy to defi ne each type of Product in WordPress.

First, you are going to defi ne your new taxonomy using the register_taxonomy() WordPress
function. This function allows you to customize how your new taxonomy will work and
look. The following code would work in a custom plugin, but for this example, you’ll use the
functions.php fi le in your theme folder. Open up functions.php in your theme and add the
following code:

<?php
add_action('init', 'prowp_define_product_type_taxonomy');

function prowp_define_product_type_taxonomy() {

 register_taxonomy('type', 'products', array('hierarchical' => true,
 'label' => 'Type', 'query_var' => true, 'rewrite' => true));

}
?>

The taxonomy defi nition starts by calling the init hook, which tells WordPress to execute your
prowp_define_product_type_taxonomy() function during initialization. Your function then
calls the WordPress function register_taxonomy(). This function is used to create your custom
taxonomy based on what values you send.

c07.indd 128c07.indd 128 12/6/12 1:31 AM12/6/12 1:31 AM

Building Your Own Taxonomies ❘ 129

You can now break down the parameters you are sending to the register_taxonomy() function.
The fi rst parameter is the taxonomy name, in this case type. This is the name that will defi ne this
taxonomy in the database. The second parameter is the object type. For this example, you will
use products, which is the name of your custom post type. The third and fi nal parameter is for
arguments, meaning you actually send multiple values to this parameter.

In this example, you’ll pass four arguments. The fi rst is hierarchical, which defi nes whether or
not your custom taxonomy can support nested taxonomies, forming a hierarchy. In the preceding
example, you set this to true, so your taxonomy will function just like WordPress’ built-in
categories that may contain sub-categories. The next argument, label, is used to set the name
of your taxonomy for use in admin pages within WordPress. If the query_var argument is set to
false, then no queries can be made against the taxonomy; if true then the taxonomy name (with
dashes replacing spaces) is used as a query variable in URL strings. Specifying a string value for
the query_var overrides the default. For example, query_var => 'strength' would permit URL
strings of the form example.com/?strength=weapons to be used to select content from the custom
taxonomy.

The fi nal argument is for rewrite, which you set to true. This tells
WordPress whether or not you want a pretty permalink when viewing
your custom taxonomy. By setting this to true you can access your custom
taxonomy posts such as example.com/type/weapons rather than the ugly
method of example.com/?type=weapons.

Now that you have created your custom taxonomy for type, take a look at
what WordPress has done with your new taxonomy. The fi rst thing you will
notice on your admin dashboard is a new link under the Products menu for
your taxonomy labeled Type, as shown in Figure 7-3.

Clicking this new menu item brings you to the custom taxonomy admin panel for types, shown in
Figure 7-4. This admin panel works exactly as the post categories admin panel does. Here you can
create new taxonomy terms, edit and delete existing terms, fi nd how many products are assigned to
each, and also search taxonomy terms.

FIGURE 7-3: Custom

taxonomy menu

option

FIGURE 7-4: Custom taxonomy admin panel

c07.indd 129c07.indd 129 12/6/12 1:31 AM12/6/12 1:31 AM

http://example.com/?strength=weapons
http://example.com/type/weapons
http://example.com/?type=weapons

130 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

The fi nal new item added for your custom taxonomy is a meta box on
the product edit screen, shown in Figure 7-5. To view this, click Add
New Product. The meta box appears on the right side of your screen
and looks very similar to the Category meta box. Here you can easily
add and delete new types on your products.

As with custom post types, you can set a variety of different
arguments when registering a custom taxonomy:

 ➤ public — Sets whether a custom taxonomy is publicly
available on the admin dashboard or front-end of your
website. By default, this is set to true. The default settings
for show_ui and show_in_nav_menus are inherited from this
setting.

 ➤ show_ui — Sets whether to create a default UI in the
WordPress admin dashboard for managing this taxonomy.
Defaults to the value defi ned by the public argument.

 ➤ show_in_nav_menus — Sets whether the post type is
available for selection in the menu management feature of
WordPress. Defaults to the value defi ned by the public
argument.

 ➤ show_tagcloud — Sets whether to allow the built-in Tag Cloud widget to use this
taxonomy. Defaults to the value defi ned by the show_ui argument.

 ➤ hierarchical — Sets whether this custom taxonomy is hierarchical (like categories) or not
hierarchical (like tags). By default, this argument is set to false.

 ➤ update_count_callback — Function name that will be called when a term in your
taxonomy gets a count update. The default value is none.

 ➤ query_var — Enables the public query var for the taxonomy. Acceptable values are true,
false, or a string to set a custom query var value.

 ➤ rewrite — The rewrite argument sets the URL parsing rules for permalinks referring
to this taxonomy. This allows you to customize the taxonomy slug in your URL. This
argument can be set to true, false, or an array of values. If passing an array, it accepts the
following values. By default this argument is set to true and the $taxonomy name is used as
the slug.

 ➤ slug — Set a custom permalink slug. Defaults to the taxonomy name value.

 ➤ with_front — Sets whether your taxonomy should use the front base from your
permalink settings. For example, if you prefi xed your permalinks with /blog, and
with_front is set to true, your taxonomy permalinks would include /blog at the
beginning.

 ➤ hierarchical — Allow hierarchical URLs. Defaults to false.

To learn more about the register_taxonomy() function, visit the offi cial Codex page at http://
codex.wordpress.org/Function_Reference/register_taxonomy.

FIGURE 7-5: Custom taxonomy

meta box

c07.indd 130c07.indd 130 12/6/12 1:31 AM12/6/12 1:31 AM

http://codex.wordpress.org/Function_Reference/register_taxonomy
http://codex.wordpress.org/Function_Reference/register_taxonomy

Building Your Own Taxonomies ❘ 131

Setting Custom Taxonomy Labels

Similar to creating a custom post type in WordPress, custom taxonomies feature several text strings
that are shown throughout the WordPress admin dashboard for your taxonomy. These text strings
are typically a link, button, or extra information about the custom taxonomy. By default, the term
“Tag” is used for non-hierarchical taxonomies and “Category” for hierarchical taxonomies.

The available labels for your custom taxonomy include:

 ➤ name — General name for the taxonomy, which is usually plural.

 ➤ singular_name — The singular version of the name for the taxonomy.

 ➤ search_items — Text for the search items button.

 ➤ popular_items — Label for popular items text.

 ➤ all_items — Label for all items text.

 ➤ parent_item — The parent item text. Not used on non-hierarchical taxonomies.

 ➤ parent_item_colon — Same as parent_item, but with a colon at the end.

 ➤ edit_item — Used as the text for editing an individual taxonomy term.

 ➤ update_item — Used as the text for updating an individual taxonomy term.

 ➤ add_new_item — Text for creating a new taxonomy term.

 ➤ new_item_name — The new item text name text.

 ➤ separate_items_with_commas — The separate items with commas text used in the
taxonomy meta box. Not used on hierarchical taxonomies.

 ➤ add_or_remove_items — Text displayed in the taxonomy meta box when JavaScript is
disabled. Not used on hierarchical taxonomies.

 ➤ choose_from_most_used — The choose from most used text used in the taxonomy meta
box. Not used on hierarchical taxonomies.

 ➤ menu_name — The menu name text. Defaults to the value of name.

Setting these labels makes it much easier on users when administering custom taxonomy terms.
Now modify the custom taxonomy registration code from earlier with custom labels:

<?php
add_action('init', 'prowp_define_product_type_taxonomy');

function prowp_define_product_type_taxonomy() {

 $labels = array(
 'name' => 'Type',
 'singular_name' => 'Types',
 'search_items' => 'Search Types',
 'all_items' => 'All Types',
 'parent_item' => 'Parent Type',
 'parent_item_colon' => 'Parent Type:',

c07.indd 131c07.indd 131 12/6/12 1:31 AM12/6/12 1:31 AM

132 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

 'edit_item' => 'Edit Type',
 'update_item' => 'Update Type',
 'add_new_item' => 'Add New Type',
 'new_item_name' => 'New Type Name',
 'menu_name' => 'Type'
);

 $args = array(
 'labels' => $labels,
 'hierarchical' => true,
 'query_var' => true,
 'rewrite' => true
);

 register_taxonomy('type', 'products', $args);

}
?>

Using Your Custom Taxonomy

Now that you’ve created your custom taxonomy, you need to know how to use it on your website. As
always, WordPress features some very easy-to-use functions for working with your custom taxonomy.
The following shows how you can display a tag cloud showing your custom taxonomy terms:

<?php wp_tag_cloud(array('taxonomy' => 'type', 'number' => 5)); ?>

The wp_tag_cloud() function can accept many different arguments, but in this example, you’re
using only two: taxonomy and number. First, you set your taxonomy to type; this tells WordPress to
return only taxonomy terms defi ned under the custom taxonomy you created for types. Next, you
defi ne the number of terms you want to display, which in this example is 5. Calling this function
in your theme sidebar displays a nice tag cloud that shows the fi ve taxonomy terms with the most
products assigned to them.

You can also create a custom Loop using WP_Query to display products for a specifi c taxonomy
term. Say you want to create a custom Loop to display only products that are in the weapon type:

<?php
$args = array(
 'post_type' => 'products',
 'tax_query' => array(
 array(
 'taxonomy' => 'type',
 'field' => 'slug',
 'terms' => 'weapon'
)
)
);

$products = new WP_Query($args);

while ($products->have_posts()) : $products->the_post();

c07.indd 132c07.indd 132 12/6/12 1:31 AM12/6/12 1:31 AM

Metadata ❘ 133

 echo '<p>' .get_the_title(). '</p>';
endwhile;

wp_reset_postdata();
?>

That’s it! The two WP_Query arguments you send are the post_type, products in this case, and the
tax_query, which specifi es which taxonomy term to use.

You can also easily display custom taxonomy terms assigned to each post. To do this, you’ll be using
the get_the_term_list() WordPress function. This function works very similarly to get_the_
tag_list() but is for building a custom taxonomy term list instead.

<?php echo get_the_term_list($post->ID, 'type', 'Product Type: ',
 ', ', ''); ?>

The preceding code displays all custom taxonomy terms assigned to the post you are viewing. This
code does need to be in the Loop in your theme template fi le to work correctly. To execute the
function, you send in the post ID, custom taxonomy name, and the title you want displayed next
to the terms. Remember that you can always visit the function reference to learn more about this
function and what parameters are allowed: http://codex.wordpress.org/Function_Reference/
get_the_term_list.

The get_terms() function can also be used to retrieve an array of your custom taxonomy values. In
the following example, you retrieve all of the terms for your type taxonomy and loop through the
values displaying the term name:

<?php
$terms = get_terms('type');
foreach ($terms as $term) {
 echo '<p>' .$term->name. '</p>';
}
?>

Keep in mind that you need to make sure the taxonomy is defi ned before you start working with
custom taxonomy values. If any of the preceding examples return blank, that means they were
executed before your register_taxonomy() function was called to defi ne your custom taxonomy.

Defi ning custom taxonomies in WordPress is a very powerful way to organize your website content.
Using the preceding methods can help transform your website into a content management system
using the power of WordPress.

METADATA

In this chapter, you’ve learned how to create custom post types to add to the basic content types
managed by WordPress, and custom taxonomies to organize and collect those content types. This
chapter wraps up with a look at extending the content management descriptors of a post with
custom metadata.

c07.indd 133c07.indd 133 12/6/12 1:31 AM12/6/12 1:31 AM

http://codex.wordpress.org/Function_Reference/get_the_term_list
http://codex.wordpress.org/Function_Reference/get_the_term_list

134 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

What Is Metadata?

Metadata in WordPress refers to additional pieces of data attached to a post. For example, your
products custom post type might need a price stored with each Product entered. The price could be
stored as metadata and easily displayed on the Product detail page.

Post metadata is often referred to as Custom Fields in WordPress terminology. This is a more
user-friendly term in the admin dashboard of WordPress. WordPress adds a Custom Fields meta
box on the post-editing screen by default, as shown in Figure 7-6. If a custom post type has the
custom-fields value defi ned for the supports argument, this meta box will also appear.

FIGURE 7-6: Custom Field meta box

All post metadata is stored in the wp_postmeta table in your WordPress database.

Adding Metadata

WordPress features a simple function to add new post metadata called add_post_meta(). This
function will attach a piece of metadata to the post specifi ed as follows:

<?php add_post_meta($post_id, $meta_key, $meta_value, $unique); ?>

This function accepts the following four parameters:

 1. $post_id — The ID of the post to add metadata.

 2. $meta_key — The name of the metadata fi eld.

 3. $meta_value — The value of the metadata fi eld.

 4. $unique — A value identifying whether or not the key should be unique. The default value
is false.

Now that you understand the parameters for the add_post_meta() function, you can use it to add
some metadata to your products.

add_post_meta(420, 'prowp_price', '34.99', true);

This code example adds a metadata entry called prowp_price with a value of 34.99 to product ID
420. You also set the $unique value to true, which means there cannot be multiple entries for the

c07.indd 134c07.indd 134 12/6/12 1:31 AM12/6/12 1:31 AM

Metadata ❘ 135

prowp_price fi eld on this product. Now if you edit the product in WordPress, you will see a prowp_
price fi eld and value in the custom fi elds meta box.

NOTE To prevent metadata keys from appearing in the Custom Fields meta box
on the Post Edit screen, prefi x the meta key with an underscore like _prowp_
price. This will hide the data from the user and is common practice when
creating custom meta boxes.

Updating Metadata

As easy as it is to add new metadata to a post, you can also update metadata using the update_
post_meta() function. This function will update a piece of metadata attached to a post specifi ed, as
shown here. If the meta key does not already exist, the function will create it.

<?php update_post_meta($post_id, $meta_key, $meta_value, $prev_value); ?>

This function accepts the following parameters:

 ➤ $post_id — The ID of the post to update metadata.

 ➤ $meta_key — The name of the metadata fi eld.

 ➤ $meta_value — The value of the metadata fi eld.

 ➤ $prev_value — The old value of the metadata fi eld to update. This is to differentiate
between several fi elds with the same key and is an optional fi eld.

For an example, you can update the price on your product from earlier as follows:

update_post_meta(420, 'prowp_price', '6.99');

The preceding code example updates the previously added metadata fi eld prowp_price to 6.99 for
product ID 420.

Deleting Metadata

Now that you understand how to add and update post metadata, you can learn how to delete that
data. To delete post metadata, you’ll use the delete_post_meta() function.

<?php delete_post_meta($post_id, $meta_key, $meta_value); ?>

This function accepts the following parameters:

 ➤ $post_id — The ID of the post to delete metadata from.

 ➤ $meta_key — The name of the metadata fi eld.

 ➤ $meta_value — The value of the metadata fi eld. This is to differentiate between several
fi elds with the same key and is an optional fi eld.

c07.indd 135c07.indd 135 12/6/12 1:31 AM12/6/12 1:31 AM

136 ❘ CHAPTER 7 CUSTOM POST TYPES, CUSTOM TAXONOMIES, AND METADATA

Let’s delete the post metadata you created earlier:

delete_post_meta(420, 'prowp_price');

The preceding code example will delete the prowp_price metadata from product ID 420. You did
not defi ne the $meta_value parameter, so all prowp_price entries will be deleted from product
ID 420.

Retrieving Metadata

You’ve covered how to add, update, and delete metadata, so now you will review how to retrieve
and display metadata. WordPress makes it easy to retrieve post metadata for display or use in other
code. A good place to use this code is within a Loop to display custom metadata for a particular
piece of content.

To retrieve metadata, you’ll use the get_post_meta() function:

<?php $meta_values = get_post_meta($post_id, $key, $single); ?>

The function accepts these parameters:

 ➤ $post_id — The ID of the post to retrieve metadata for.

 ➤ $meta_key — The name of the metadata fi eld.

 ➤ $single — A value identifying whether to return a single meta value fi eld (true) or return
an array of values (false). By default, this parameter is set to false.

Let’s retrieve and display the price for your product created earlier:

$product_price = get_post_meta(420, 'prowp_price', true);
echo 'Price $' .$product_price;

The product price is retrieved and displayed for product ID 420. Now assume you want to store
various colors for the product. Instead of creating a separate metadata entry for each color, you’ll
create an array of color entries in a single metadata fi eld:

<?php
add_post_meta(420, 'prowp_colors', 'orange', false);
add_post_meta(420, 'prowp_colors', 'black', false);

$product_colors = get_post_meta(420, 'prowp_colors', false);

echo '<ul class="product-colors">';

foreach ($product_colors as $color) {
 echo '' .$color .'';
}

echo '';
?>

c07.indd 136c07.indd 136 12/6/12 1:31 AM12/6/12 1:31 AM

Summary ❘ 137

First you have to create the metadata entries for the product colors. This is done using the
add_post_meta() function. Next, set the meta key name to the same and the $unique parameter
to false, which will allow multiple entries under the same meta key.

Next, you’ll use the get_post_meta() function to retrieve the product colors you just set. Notice
the $single parameter is set to false, which allows you to return all entries for prowp_colors for
product ID 420 as an array. Finally, you’ll loop through the colors array and display each product color.

Another powerful function for retrieving post metadata is the get_post_custom() function. This
function returns a multidimensional array of all metadata for a particular post.

<?php get_post_custom($post_id); ?>

This function accepts a single required parameter — $post_id — the ID of the post whose custom
fi elds will be retrieved.

Let’s retrieve and display all metadata entries for your product:

<?php
$product_metadata = get_post_custom(420);

foreach($product_metadata as $name => $value) {

 echo '' .$name .' => ';

 foreach($value as $nameAr => $valueAr) {
 echo '
' .$nameAr." => ";
 echo var_dump($valueAr);
 }

 echo '
';

}
?>

The preceding code example will retrieve all metadata for product ID 420. Because the value
returned is a multidimensional array, you have to do multiple loops to display all of the data. If
you are retrieving multiple pieces of metadata for a post, this is the optimized method because it
retrieves all metadata in a single database query instead of running separate queries for each piece of
data requested. As you can tell, this is a more advanced method for retrieving post metadata.

SUMMARY

It’s very easy to see how using a combination of custom post types, custom taxonomies, and
metadata in WordPress opens the doors to endless possibilities. These features have morphed
WordPress from a simple blogging platform into a full-fl edged content management system capable
of handling any type of data you can conceive.

In the next chapter you’ll dive into creating custom plugins for WordPress. You’ll learn the proper
ways to integrate into various areas of WordPress, understanding data validation to develop secure
code, and even how to publish your plugins to the WordPress.org Plugin Directory.

c07.indd 137c07.indd 137 12/6/12 1:31 AM12/6/12 1:31 AM

http://WordPress.org

c07.indd 138c07.indd 138 12/6/12 1:31 AM12/6/12 1:31 AM

Plugin Development

WHAT’S IN THIS CHAPTER?

 ➤ Creating plugin fi les

 ➤ Data validation and plugin security

 ➤ Using WordPress fi lter and action hooks

 ➤ How to properly use the Settings API

 ➤ Creating a widget and dashboard widget

 ➤ Creating custom shortcodes

 ➤ Supporting language translation

 ➤ Publishing a plugin to the offi cial Plugin Directory

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118442272 on the Download Code tab. The code is in the Chapter 8
download fi le and individually named according to the code fi le names throughout the chapter.

One of the main reasons WordPress is such a popular software platform is the ease with which
it can be extended. Plugins are the primary reason for this and allow endless possibilities in
extending WordPress. This chapter discusses everything you need to know to create amazing
plugins in WordPress.

You are going to look at plugins from both a functional and structural perspective. Starting
with the packaging of plugin fi les, you’ll dig into the API hooks that connect your custom
plugin code to the WordPress core and show how to integrate a plugin into various parts of the
WordPress editing, management, and display processes. Finally, you will see how to publish
a plugin for others to use. At the end of this chapter, you build a WordPress plugin from the

8

c08.indd 139c08.indd 139 12/6/12 1:19 AM12/6/12 1:19 AM

http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://WROX.COM
http://wrox.com

140 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

ground up. You’ll utilize many of the features discussed in this chapter and learn the proper way to
extend WordPress through a custom plugin.

PLUGIN PACKAGING

When developing plugins in WordPress, it’s best to follow a standard plugin packaging
template — that is, certain functional and descriptive components that will exist in all plugins you
create for WordPress. This chapter discusses the requirements for a plugin, as well as recommended
additions such as software license and internationalization. While the actual code implementation
of the plugin is the exciting part of the process, consider the plugin packaging similar to elementary
grammar rules for a new language: necessary for making yourself understood.

Creating a Plugin File

The fi rst step in creating a WordPress plugin is to create a new PHP fi le for your plugin code. The
plugin fi le name should be descriptive of your plugin so it’s easy to identify your plugin in
the plugins directory. It should also be unique because all WordPress plugins exist in the same folder.
If your plugin fi le name is too generic, you run the risk of another plugin having the same fi le name,
which would be an obvious problem.

A plugin can also exist in a folder containing all of the necessary fi les the plugin needs to run. A
folder should always be used because it helps keep the user’s plugin folder organized. It’s also a good
idea to maintain a clean folder structure, which refers to keeping all similar fi les together. For
example, if your plugin includes images, you should create an /images folder inside your plugin
folder to store any custom images your plugin might use.

Let’s look at a standard folder structure for a plugin:

 ➤ /unique-plugin-name (no spaces or special characters)

 ➤ unique-plugin-name.php — Primary plugin PHP fi le

 ➤ uninstall.php — The uninstall fi le for your plugin

 ➤ /js — Folder for JavaScript fi les

 ➤ /css — Folder for style sheet fi les

 ➤ /includes — Folder for additional PHP includes

 ➤ /images — Folder for plugin images

Keeping your fi les organized using a clean folder structure can make it much easier to track the fl ow
of your plugin over time.

Creating the Plugin Header

A requirement for all WordPress plugins is a valid plugin header. The plugin header must be defi ned
at the very top of your main PHP fi le as a PHP comment. It does not need to exist in every fi le for
your plugin, only the main PHP fi le. This header tells WordPress that your PHP fi le is in fact a

c08.indd 140c08.indd 140 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Packaging ❘ 141

legitimate WordPress plugin and should be processed as such. Following is an example of a standard
plugin header:

<?php
/*
Plugin Name: Halloween Plugin
Plugin URI: http://example.com/wordpress-plugins/halloween-plugin
Description: This is a brief description of my plugin
Version: 1.0
Author: Michael Myers
Author URI: http://example.com
License: GPLv2
*/
?>

The only required line in the plugin header
is the Plugin Name. The rest of the information is
optional but highly recommended. The information
listed in your plugin header is used on the Manage
Plugins section of WordPress. You can see what
the header looks like in WordPress in Figure 8-1.

You can see how important the plugin header information is, including all optional data. The
information should be accurate and provide good links to your website and the plugin URI for
additional information and support regarding your plugin.

Plugin License

When developing a plugin you plan on releasing to the public, it’s customary to include the software
license that the plugin is released under just below your plugin header. This is not a requirement for
the plugin to function, but is a good idea to clearly state what software license your plugin uses. A
license comment block will also state that there is no warranty, which protects you from liability
should someone decide your plugin destroyed his or her site. Following is a standard GPL license,
under which most WordPress plugins are released:

<?php
/* Copyright YEAR PLUGIN_AUTHOR_NAME (email : PLUGIN AUTHOR EMAIL)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
?>

FIGURE 8-1: Example plugin listing

c08.indd 141c08.indd 141 12/6/12 1:19 AM12/6/12 1:19 AM

http://example.com/wordpress-plugins/halloween-plugin
http://example.com

142 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

To use this license in your plugin fi ll in the year, plugin author name, and plugin author e-mail in
the preceding comment. By doing so your plugin will be licensed under the GPL.

WordPress is licensed under the GPLv2 software license. This is a very common software license
for open source projects. Since plugins are dependent on WordPress to function, they should also be
released under a GPL, or compatible, software license. For more information on GPL licensing visit
http://www.gnu.org/licenses/licenses.html.

Activating and Deactivating Functions

You’ll want to utilize some important functions when creating plugins. The fi rst of these is called the
register_activation_hook() function. This function is executed when your plugin is activated in
the WordPress Plugins SubPanel. The function accepts two parameters: the path to the main plugin
fi le and the function to execute when the plugin is activated.

In most of the code examples in this chapter, you’re going to use prowp as a function and variable
prefi x, as well as a descriptive name for your plugin. It’s just an example short name, but one that
you’re going to see in a lot of code. The following example executes the function prowp_install()
when the plugin is activated:

<?php
register_activation_hook(__FILE__, 'prowp_install');

function prowp_install() {
 //do something
}
?>

This is an extremely useful function if you need to execute any actions when your plugin is
activated. For example, you may want to check the current WordPress version to verify that your
plugin is compatible. You may also want to create some default option settings.

One important check you should always do when your plugin is activated is to verify that the
version of WordPress the user is running is compatible with your plugin. This ensures any functions,
hooks, and so on that your plugin uses are available in WordPress.

<?php
register_activation_hook(__FILE__, 'prowp_install');

function prowp_install() {
 global $wp_version;

 if (version_compare($wp_version, '3.5', '<')) {

 wp_die('This plugin requires WordPress version 3.5 or higher.');

 }
}
?>

The preceding function uses the global variable $wp_version, which stores the currently running
version of WordPress, and verifi es that it is not running a version lower than 3.5. You do the version
comparison using the version_compare() PHP function. If the WordPress version is lower than
3.5, you display an error message to the users that they need to update.

c08.indd 142c08.indd 142 12/6/12 1:19 AM12/6/12 1:19 AM

http://www.gnu.org/licenses/licenses.html

Plugin Packaging ❘ 143

There is also a function that executes when a plugin is deactivated called register_deactiva-
tion_hook(). This function is executed when your plugin is deactivated in the WordPress Plugins
SubPanel. This function accepts the same two arguments as the register_activation_hook
function. Following is an example using the deactivation function:

<?php
register_deactivation_hook(__FILE__, 'prowp_deactivate()');

function prowp_deactivate() {
 //do something
}
?>

NOTE It’s important to remember that deactivating is not uninstalling. You
should never include uninstall functionality in your deactivation function.
Imagine that a user accidentally deactivates your plugin and all of their settings
are deleted. That would not be a good user experience and should be avoided.

Internationalization

Internationalization, sometimes shortened to “i18n” in the WordPress Codex, is the process of
making your plugin or theme ready for translation, or localized. In WordPress, this means marking
strings that should be translated. Localization is the process of translating the text displayed by the
theme or plugin into different languages. This isn’t a requirement, but internationalization should
be used on any plugin you plan on distributing. This opens up your plugin to the widest possible
audience.

WordPress features many different functions to make a string translatable. The fi rst function is __
(). That isn’t a typo; the function is two underscores, as shown here:

<?php $howdy = __('Howdy Neighbor!', 'prowp-plugin'); ?>

The fi rst parameter you pass is the string that you want to be translated. This string is what will be
displayed to the browser if the text is not translated into a different language. The second parameter
is the text domain. In the case of themes and plugins, the domain should be a unique identifi er,
which is used to distinguish between all loaded translations.

If your code should echo the translatable string to the browser, you’ll want to use the _e() function,
as shown here:

<?php _e('Howdy Neighbor!', 'prowp-plugin'); ?>

This function works exactly the same as __(); the only difference is that the value is echoed to the
browser.

Placeholders need special consideration when internationalizing your plugins and themes. As an
example, look at an error message you want to make translatable:

Error Code 6980: Email is a required field

c08.indd 143c08.indd 143 12/6/12 1:19 AM12/6/12 1:19 AM

144 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

The obvious, but incorrect, way to attempt to split a string into translatable parts is to separate the
fi eld name, error number, and descriptive string:

<?php
$error_number = 6980;
$error_field = "Email";
$error = __('Error Code ', 'prowp-plugin') .$error_number. ': '
.$error_field .__(' is a required field', 'prowp-plugin');

echo $error;
?>

This is actually the wrong way to include dynamic values in your translatable string because your
translatable string is cut into two parts. These two parts may not work independently in another
language. This could also seriously confuse the translator viewing a bunch of cryptic phrases that
mean nothing when separated. The proper way is shown here:

<?php
$error_number = 6980;
$error_field = "Email";
printf(__('Error Code %1$d: %2$s is a required field', 'prowp-plugin'),
$error_number, $error_field);
?>

As you can see, this uses the PHP printf() function, which outputs the formatted string. Your
two variables are passed to printf() and inserted into the string in the designated spots. In this
example, a developer translating your plugin messages into another language would see the line as
Error Code %1$d: %2$s is a required field and know it’s possible to move around the error
number and fi eld values to make sense in the target language. Splitting the strings leads to
split translations and possibly unintentionally funny translated grammar. Alternatively, you could
use the PHP sprintf() function if you want to store the error message value in a variable prior to
displaying it.

Plurals also need special consideration when defi ning your translatable strings. Say you need to
translate a string like this:

<?php
$count = 1;
printf(__('You have %d new message', 'prowp-plugin'), $count);
?>

This works great if you have one new message, but what if you have more than one new message?
Fortunately, WordPress contains a function you can use to handle this problem called _n(). The
following code shows it in action:

<?php
$count = 34;
printf(_n('You have %d new message', 'You have %d new messages',
$count, 'prowp-plugin'), $count);
?>

This function accepts four parameters: the singular version, the plural version, the actual number,
and the domain text for your plugin. The _n() function uses the number parameter ($count in the
example) to determine whether the singular or plural string should be returned.

c08.indd 144c08.indd 144 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Packaging ❘ 145

WordPress also features a translation function you can use to add comments to your translatable
strings. This is helpful if you have a string set up for translation that might have multiple meanings.
To do this, you use the _x() function, as shown in the following code:

<?php
echo _x('Editor', 'user role', 'prowp-plugin');
echo _x('Editor', 'rich-text editor', 'prowp-plugin');
?>

As you can see, there are three parameters for this function. The fi rst is the text string to translate.
The second, and most important, is the context information for the translators. This allows you to
add custom comment messages that the translator can read to explain the context of your text to be
translated. The fi nal parameter is the text domain.

Now that you’ve prepared your plugin for translation, you must load the localization fi le to do the
translation. To do so, you execute the load_plugin_textdomain() function as shown here:

<?php
add_action('init', 'prowp_init');

function prowp_init() {
 load_plugin_textdomain('prowp-plugin', false,
 plugin_basename(dirname(__FILE__) .'/localization'));
}
?>

The fi rst parameter you pass is the domain text name that you’ve used to identify all of your
translatable strings. The second parameter is the path relative to the ABSPATH variable; however, this
parameter is now deprecated in favor of the third parameter. The fi nal parameter is the path to your
translation fi les from the /plugins directory. To store these fi les, you should create a folder inside
your plugin directory called /localization . You use the plugin_basename() and dirname()
functions to retrieve the path to your localization folder.

You can learn more about the process of creating translation fi les in the WordPress Codex at
http://codex.wordpress.org/I18n_for_WordPress_Developers.

Determining Paths

When creating WordPress plugins, you will often need to reference fi les and folders throughout the
WordPress installation. Since WordPress 2.6, users have had the ability to move this directory any-
where they want. Because of this, you should never use hard-coded paths in a plugin. WordPress
has a set of functions to determine the path to the wp-content and plugins directories, as well as
directories within your plugins. You can use these functions in your plugins to verify that any paths
you are referencing are correct regardless of where the actual directory might exist on the server.

Local Paths

To determine the local server path to your plugin, you’ll use the plugin_dir_path() function. This
function extracts the physical location relative to the plugins directory from its fi le name.

<?php echo plugin_dir_path(__FILE__); ?>

c08.indd 145c08.indd 145 12/6/12 1:19 AM12/6/12 1:19 AM

http://codex.wordpress.org/I18n_for_WordPress_Developers

146 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

You can see that you pass the __FILE__ PHP constant to the plugin_dir_path() function. This
returns the full local server path to your plugin directory:

/public_html/wp-content/plugins/halloween-plugin/

Now let’s assume you need to reference the local path to a fi le in a subdirectory in your plugin. You
can use the plugin_dir_path() function along with the subdirectory and fi les you want to
reference, as shown here:

<?php echo plugin_dir_path(__FILE__ .'js/script.js'); ?>

The preceding example would produce the following result:

/public_html/wp-content/plugins/halloween-plugin/js/script.js

URL Paths

To determine the full URL to any fi le in your plugin directory, you’ll use the plugins_url()
function as shown here:

<?php echo ''; ?>

You can see the plugins_url() function accepts two parameters. The fi rst parameter is the path
relative to the plugins URL. The second parameter is the plugin fi le that you want to be relative to.
In this case, you’ll use the __FILE__ PHP constant. The preceding example will return a full URL to
your plugin’s icon.png fi le located in the images directory, as shown here:

The following is a list of the many advantages of using the plugins_url() function to determine
plugin fi le URLs:

 ➤ Supports the /mu-plugins plugin directory

 ➤ Auto detects SSL. If SSL is enabled, the returned URL would contain https://

 ➤ Can detect the location of the plugin even if the user has moved his /wp-content directory
to a custom location

 ➤ Supports Multisite

WordPress also features various functions to determine URLs in WordPress. The following is a list
of the functions available:

 ➤ admin_url() — Admin URL (http://example.com/wp-admin/)

 ➤ site_url() — Site URL for the current site (http://example.com)

 ➤ home_url() — Home URL for the current site (http://example.com)

 ➤ includes_url() — Includes directory URL (http://example.com/wp-includes/)

 ➤ content_url() — Content directory URL (http://example.com/wp-content/)

 ➤ wp_upload_dir() — Returns an array with location information on the confi gured uploads
directory

Understanding the proper way to access fi les in your plugins is essential to ensure maximum
compatibility with all WordPress installations, regardless of how customized they are.

c08.indd 146c08.indd 146 12/6/12 1:19 AM12/6/12 1:19 AM

http://example.com/wp-content/plugins/halloween-plugin/images/icon.png
http://example.com/wp-admin/
http://example.com
http://example.com
http://example.com/wp-includes/
http://example.com/wp-content/

Plugin Security ❘ 147

PLUGIN SECURITY

One of the most important steps in creating a plugin is making sure it is secure from hacks and
exploits. If a plugin contains security holes, it opens up the entire WordPress website for malicious
hackers to wreak havoc. WordPress features some built-in security tools that you should always
utilize to make sure your plugins are as secure as can be.

Remember that all data external to your plugin code is suspect until proven valid. Always validate
your data before displaying to the browser or inserting into the database to help keep your plugins
secure from hacks and exploits. You’ll be using the mentioned escaping and sanitizing functions
discussed in this section throughout the chapter.

Nonces

Nonces, which stands for “number used once,” are used in requests (saving options, form posts,
Ajax requests, actions) to stop unauthorized access by generating a secret key. This secret key is
generated prior to generating a request (that is, form post). The key is then passed in the request to
your script and verifi ed to be the same key before anything else is processed. Now let’s look at
how you can manually create and check nonces. The following example uses a nonce in a form:

<form method="post">

 <?php wp_nonce_field('prowp_settings_form_save', 'prowp_nonce_field'); ?>

 Enter your name: <input type="text" name="text" />

 <input type="submit" name="submit" value="Save Options" />
</form>

When creating a form nonce, the function wp_nonce_field() must be called inside of your <form>
tags. There are actually no required parameters for this function to work, but for increased security
there are two parameters you should set. The fi rst parameter is $action, which should be a unique
string that is descriptive of the action being performed. The second parameter is a unique name for
the fi eld, $name. By default, the fi eld name will be _wpnonce, but you can defi ne a custom unique
name in this parameter.

When the wp_nonce_field() function is called, it will generate a unique secret key that will be
added as a hidden form fi eld and passed with your form data. After your form is posted, the fi rst
thing you need to do is check your nonce secret key using the check_admin_referer() function
like so:

function prowp_update_options() {

 if (isset($_POST['submit'])) {

 //check nonce for security
 check_admin_referer('prowp_settings_form_save', 'prowp_nonce_field');

 //nonce passed, now do stuff

 }
}

c08.indd 147c08.indd 147 12/6/12 1:19 AM12/6/12 1:19 AM

148 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Verifying that the nonce is valid is as simple as calling the check_admin_referer() function and
passing it your unique nonce action and name that you defi ned earlier. If the nonce secret key does
not match the secret key created on your form, WordPress will stop processing the page and issue an
error message. This primarily protects it from cross-site request forgery, or CSRF.

Nonces can also be used on links that perform actions. To create a URL nonce, you use the
wp_nonce_url() function. This can be used in conjunction with multiple query strings in your URL
like so:

<?php
$link = 'my-url.php?action=delete&ID=15';
?>
<a href="<?php echo wp_nonce_url($link, 'prowp_nonce_url_check'); ?>">Delete

The wp_nonce_url() function accepts two parameters: the URL to add the nonce to and the unique
nonce name you are creating. The preceding code would generate a link that looks like this:

http://example.com/wp-admin/my-url.php?action=delete&ID=15&_wpnonce=e9d6673015

Notice how the _wpnonce query string is appended to the link. This is the secret key value that was
generated for your URL nonce. If your URL has no query strings, the wp_nonce_url() function
will add the nonce value as the only query string being passed. If your URL contains query strings,
that nonce value will be added to the end of the URL. You can verify that the nonce is correct just as
you did with your form — by using the check_admin_referer() function:

function prowp_update_options() {

 if (isset($_GET['action'])) {

 //check nonce for security
 check_admin_referer('prowp_nonce_url_check');

 //do stuff
 }
}

This function verifi es that your action query string is set before checking your nonce value. Once the
nonce has been validated, the script will continue. Remember that if the nonce is not validated, the
page execution will stop, preventing any type of hack attempt.

Data Validation and Sanitization

Any data that comes from somewhere external to your code (such as user input) needs to be
scrubbed to verify that it’s free from illegal characters and potentially unsafe data. Data validation
is essential to proper plugin security. Improperly validated data can lead to SQL injection hacks,
exploits, errors, and much more.

WordPress features a set of escaping functions that you can use to verify that your data is escaped
properly when being displayed to the screen. These escaping functions follow a set naming standard
(see the following list), which makes it easy to identify what they are escaping. Figure 8-2 shows the
escaping function naming template.

c08.indd 148c08.indd 148 12/6/12 1:19 AM12/6/12 1:19 AM

http://example.com/wp-admin/my-url.php?action=delete&ID=15&_wpnonce=e9d6673015

Plugin Security ❘ 149

 ➤ esc_: The prefi x for the escaping functions.

 ➤ attr: The escaping context (attr, html, textarea, js, sql, url,
and url_raw).

 ➤ _e: The optional translation suffi x. Available suffi xes are __ and _e.

The esc_html() function is used for escaping data that contains HTML. This function encodes
special characters into the equivalent HTML entities. These characters include &, <, >, ", and ' as
follows:

<?php esc_html($text); ?>

The esc_attr() function is used for escaping HTML attributes. This function should be used
whenever you need to display data inside an HTML element:

<input type="text" name="first_name" value="<?php echo esc_attr($text); ?>">

The esc_textrea() function is used for escaping HTML <textarea> values. This function should
be used to encode text for use in a <textarea> form element as follows:

<textarea name="description"><?php echo esc_textarea($text); ?></textarea>

WordPress also features a function for validating URLs called esc_url(). This function should be
used to scrub the URL for illegal characters. Even though the href is technically an HTML attri-
bute, you should use the esc_url() function like so:

<a href="<?php echo esc_url($url); ?>">

The esc_js() function escapes text strings in JavaScript:

<script>
 var bwar='<?php echo esc_js($text); ?>';
</script>

The esc_sql() function escapes data for use in a MySQL query. This function is really just a
shortcut for $wpdb->escape()as follows:

<?php esc_sql($sql); ?>

The optional translation suffi x (__ or _e) is used for translating the escaped data. The _e suffi x will
echo the escaped translated text, whereas __ only returns the escaped translated value.

<?php
//escapes, translates, and displays the text
esc_html_e($text, 'prowp-plugin');

//escapes, translates, but does NOT display
$text = esc_html__($text, 'prowp-plugin');
?>

If the data you are validating is supposed to be an integer, use the intval() PHP function to verify
that. The intval() function will return the integer value of a variable. If the variable is a string,
and therefore not an integer, it will return 0.

$variable = 12345;
$variable = intval($variable);

FIGURE 8-2: Escaping

API breakdown

1 2 3

esc_attr_e()

c08.indd 149c08.indd 149 12/6/12 1:19 AM12/6/12 1:19 AM

150 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Another useful function for working with integers is the absint() WordPress function. This
function ensures that the result is a nonnegative integer:

$variable = 12345;
$variable = absint($variable);

WordPress also features some very useful sanitizing functions. These functions should be used to
sanitize any data prior to saving it in the database. One of those functions is sanitize_text
_field(). This function will remove all invalid UTF-8 characters, convert single < into HTML
entities, and remove all HTML tags, line breaks, and extra white space.

<?php sanitize_text_field($text); ?>

You can also sanitize an e-mail address using sanitize_email(). This function will strip out all
characters that are not allowable in an e-mail address. Consider the following code:

<?php
$sanitized_email = sanitize_email(' éric@loremipsum.com!');
echo $sanitized_email; //will output: ric@loremipsum.com
?>

You can see that the sanitize_email() function removes the extra spaces and illegal characters
from the e-mail address submitted.

A very powerful function for processing and sanitizing untrusted HTML is wp_kses(). This
function is used in WordPress to verify that only allowed HTML tags and attributes can be
submitted by users. By defi ning allowed HTML tags you can avoid cross-site scripting (XSS) attacks
through your code. Consider the following example:

$allowed_tags = array(
 'strong' => array(),
 'a' => array(
 'href' => array(),
 'title' => array()
)
);

$html = 'link.
 This is bold and strong';

echo wp_kses($html, $allowed_tags);

The fi rst step is to defi ne an array of all HTML tags and attributes. In this example, you are allowing
the and <a> tags. The <a> tag is allowed to include the href and title attributes. Next,
you build an $html variable to test out the function. The fi nal step is to pass the $html string and
$allowed_tags arguments to the wp_kses() function.

The preceding example would display the following code:

link. This is bold and strong

Notice the tags have been completely removed. The function also removed the class
attribute from the <a> tag because you didn’t specify that as an allowed attribute. This basic
example really shows the power of this function. Any time you need to allow users to input HTML
code, you should always use the wp_kses() function to verify that only acceptable HTML tags and
attributes are allowed.

c08.indd 150c08.indd 150 12/6/12 1:19 AM12/6/12 1:19 AM

mailto:�ric@loremipsum.com
mailto:ric@loremipsum.com

Know Your Hooks: Actions and Filters ❘ 151

For more information on data validation in WordPress, check out the following Codex article:
http://codex.wordpress.org/Data_Validation.

NOTE Throughout this chapter, you’ll be using various data validation
 techniques in the code examples. The goal of this is to stress the importance
of keeping security in the front of your mind when developing plugins for
WordPress.

KNOW YOUR HOOKS: ACTIONS AND FILTERS

One of the most important features for extending WordPress is called a hook. Hooks are simply a
standardized way of “hooking” into WordPress. Using hooks, you can execute functions at specifi c
times in the WordPress process, allowing you to alter how WordPress functions and the expected
output. Hooks are the primary way plugins interact with your content in WordPress. Up to this
point, you’ve focused on the structure and format of plugins, but now you’re actually going to make
a plugin do something!

A hook is simply a PHP function call with various parameters that can be sent. Following is an
example showing a properly formatted Action hook call:

<?php add_action($tag, $function_to_add, $priority, $accepted_args); ?>

Actions and Filters

Two types of hooks can be used: actions and fi lters. Action hooks are triggered by events in
WordPress. For example, an Action hook is triggered when a new post is published. Filter hooks are
used to modify WordPress content before saving it to the database or displaying it to the screen. For
example, a Filter hook is available for the content of the post or page. This means you can alter that
content after it is retrieved from the database but before it is displayed in your browser.

Look at an example of a Filter hook in action. Remember that Filter hooks modify content, so this
example modifi es the post content:

<?php add_filter('the_content', 'prowp_function'); ?>

The add_filter() function is used to execute a Filter action. You are using the fi lter called the_
content, which is the fi lter for your post content. This tells WordPress that every time the content is
displayed, it needs to pass through your custom function called prowp_function().
The add_filter() function can accept four parameters:

 1. filter_action (string): The fi lter to use

 2. custom_filter_function (string): The custom function to pass the fi lter through

 3. priority (integer): The priority in which this fi lter should run. When multiple callback
functions are attached to the same hook, the priority parameter determines the execution
order

 4. accepted args (integer): The number of arguments the function accepts

c08.indd 151c08.indd 151 12/6/12 1:19 AM12/6/12 1:19 AM

http://codex.wordpress.org/Data_Validation

152 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Here’s an example of the_content fi lter in action:

<?php
add_filter('the_content', 'prowp_profanity_filter');

function prowp_profanity_filter($content) {

 $profanities = array('sissy', 'dummy');
 $content= str_ireplace($profanities, '[censored]', $content);

 return $content;

}
?>

The prowp_profanity_filter() function will replace the words “sissy” and “dummy”
with [censored] automatically on all posts and pages on your website. You are using the
str_ireplace() PHP function to handle the replacement. This function will replace some characters
in a string with other characters in a string. The str_ireplace() function is also case-insensitive.
Because you are using a Filter hook, the content isn’t actually modifi ed in the database; instead, it’s
modifi ed during processing of the_post(), before being displayed, when this fi lter is invoked.
The content in the database is not affected so the words “sissy” and “dummy” will still exist in your
content, and if you ever disable or change the plugin, those words will appear in the displayed text.
Filter hooks always receive data; in this case, the $content variable is passed to your function and
contains your post content. Also notice the last line of your function returns the $content variable.
Remember that you must always return the content you are modifying or else it returns empty and
therefore displays nothing.

Now that you’ve seen the Filter hook in action, take a look at the Action hook and what it can do.
The Action hook is triggered by events in WordPress. WordPress doesn’t require any return values
from your Action hook function; the WordPress Core just notifi es your code that a specifi c event has
taken place. The Action hook is structured exactly like a Filter hook, as you can see in the following
code:

<?php add_action('hook_name', 'prowp_function'); ?>

The add_action() function accepts four parameters just like the add_filter() function. Here you
can set the hook name you want to hook into, the custom function name you are going to execute
when the event is triggered, and the priority and the number of accepted args. Here’s a real example
using an Action hook:

<?php
add_action('comment_post', 'prowp_email_new_comment');

function prowp_email_new_comment() {
 wp_mail('me@example.com', 'New blog comment',
 'There is a new comment on your website: http://example.com');
}
?>

Notice that you are using the comment_post Action hook. This action is triggered whenever a new
comment is posted in WordPress. As you can see, the prowp_email_new_comment() function will
send an e-mail any time a new comment is created. Also notice that you are not sending in any

c08.indd 152c08.indd 152 12/6/12 1:19 AM12/6/12 1:19 AM

http://example.com

Know Your Hooks: Actions and Filters ❘ 153

variables to your function or returning any values out of your function. Action hooks don’t require
this, but if needed, you can pass values into your function.

Popular Filter Hooks

More than 1,500 different hooks are available in WordPress, which is a bit overwhelming at fi rst.
Fortunately, a handful of them are used much more often than the rest. This section explores some
of the more commonly used hooks in WordPress.

Some of the more common Filter hooks are:

 ➤ the_content — Applied to the content of the post or page before displaying

 ➤ the_content_rss — Applied to the content of the post or page for RSS inclusion

 ➤ the_title — Applied to the post or page title before displaying

 ➤ comment_text — Applied to the comment text before displaying

 ➤ wp_title — Applied to the page <title> before displaying

 ➤ the_permalink — Applied to the permalink URL

Let’s look at some of the more popular Filter hooks in WordPress, starting with a more practical
example than your profanity fi lter, which uses the_content Filter hook. This hook allows you to
alter the content for posts and pages prior to it being displayed in the browser. By using this hook
you can add your custom content either before, in the middle, or after the content:

<?php
add_filter ('the_content', 'prowp_subscriber_footer');

function prowp_subscriber_footer($content) {

 if(is_single()) {

 $content.= '<h3>Enjoyed this article?</h3>';
 $content.= '<p>Subscribe to my
 RSS feed!</p>';
 }

 return $content;
}
?>

In this example, you are adding your subscribe text to the bottom of the content of your posts.
Notice that you are also using the is_single() conditional tag to verify that your subscribe text is
added only on a single post page. The $content variable stores all of the post or page content, so by
appending your subscribe text you are adding it to the bottom of your post content. This is the ideal
way to add content to the bottom of all posts because you aren’t actually modifying the post. In the
future, if you decide to change this message you can change it in one place, rather than updating
every post in your website.

c08.indd 153c08.indd 153 12/6/12 1:19 AM12/6/12 1:19 AM

http://example.com/feed

154 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Another powerful Filter hook is the_title. This hook is used for changing the post or page title
prior to being displayed. Here’s an example that uses this fi lter:

<?php
add_filter('the_title', 'prowp_custom_title');

function prowp_custom_title($title) {

 $title .= ' - By Example.com';
 return $title;

}
?>

This example adds “By Example.com” to all of your post and page titles. Remember that this
doesn’t actually modify the title in the database but instead modifi es the display of the title
generated for the end user.

The default_content Filter hook is useful for setting the default content when creating a new post
or page. This is helpful if you have a set format for all of your posts as it can save you valuable
writing time:

<?php
add_filter('default_content', 'prowp_default_content');

function prowp_default_content($content) {

 $content = 'For more great content please subscribe to my RSS feed';
 return $content;

}
?>

Filter hooks are exceptionally powerful for inserting your own processing into a variety of points in
the Loop processing of each post. Realizing the full power of the WordPress plugin system means
also using action hooks to fi re your own code in response to events within the WordPress core.

Popular Action Hooks

Some of the more common Action hooks are:

 ➤ publish_post — Triggered when a new post is published.

 ➤ create_category — Triggered when a new category is created.

 ➤ switch_theme — Triggered when you switch themes.

 ➤ admin_head — Triggered in the <head> section of the admin dashboard.

 ➤ wp_head — Triggered in the <head> section of your theme.

 ➤ wp_footer — Triggered in the footer section of your theme usually directly before
the </body> tag.

 ➤ init — Triggered after WordPress has fi nished loading, but before any headers are sent.
Good place to intercept $_GET and $_POST HTML requests.

c08.indd 154c08.indd 154 12/6/12 1:19 AM12/6/12 1:19 AM

http://Example.com
http://Example.com

Know Your Hooks: Actions and Filters ❘ 155

 ➤ admin_init: Same as init but only runs on admin dashboard pages.

 ➤ user_register: Triggered when a new user is created.

 ➤ comment_post: Triggered when a new comment is created.

One of the most commonly used Action hooks is the wp_head hook. Using the wp_head hook, you
can insert any custom code into the <head> section of the WordPress theme. Consider the following
example:

<?php
add_action('wp_head', 'prowp_custom_css');

function prowp_custom_css() {
 ?>
 <style type="text/css">
 a {
 font-size: 14px;
 color: #000000;
 text-decoration: none;
 }
 a:hover {
 font-size: 14px
 color: #FF0000;
 text-decoration: underline;
 }
 </style>
<?php
}
?>

This code will drop anything inside your prowp_custom_css() function into the header of the
WordPress theme, in this case your custom CSS script.

The wp_footer hook is also a very commonly used Action hook. Using this hook you can insert
any custom code in the footer of the WordPress theme. This is a great method for adding analytic
tracking code to your website:

<?php
add_action('wp_footer', 'prowp_site_analytics');

function prowp_site_analytics() {
?>
 <script type="text/javascript">
 var gaJsHost = (("https:" == document.location.protocol) ?
 "https://ssl." : "http://www.");
 document.write(unescape("%3Cscript src='" + gaJsHost +
 'google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
 </script>
 <script type="text/javascript">
 var pageTracker = _gat._getTracker("UA-XXXXXX-XX");
 pageTracker._trackPageview();
 </script>
<?php
}
?>

c08.indd 155c08.indd 155 12/6/12 1:19 AM12/6/12 1:19 AM

http://google-analytics.com/ga.js

156 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

In the preceding example you can see how you can easily insert your Google Analytics tracking code
to the footer of every page on your website.

The admin_head Action hook is very similar to the wp_head hook, but rather than hooking into the
theme header, it hooks into the admin dashboard header. This is useful if your plugin requires
custom CSS on the admin dashboard, or any other custom header code.

The user_register Action hook is executed when a new user is created in WordPress. This user
can be created by an admin or by the new user. This is a useful hook if you want to set some default
values for a new user or to e-mail your new members thanking them for joining your website.

Hooks are probably one of the most under-documented features in WordPress. It can be a real
challenge fi nding the correct hooks to use for the job. The fi rst resource to use is always the
Codex. Here you can fi nd the Filter Reference (http://codex.wordpress.org/Plugin_API/
Filter_Reference) and Action Reference (http://codex.wordpress.org/Plugin_API/Action_
Reference) sections helpful in tracking down appropriate hooks.

Another highly recommended reference is the Plugin Directory (http://wordpress.org/extend/
plugins/) on WordPress.org. Sometimes the best way to fi gure something out is to see how other
developers accomplished a similar task. Find a plugin in the directory that is similar in functionality
to what you want to build. Most likely, the plugin author will have already dug up the correct hooks
for WordPress that you will be using. It never hurts to learn by example, and published plugins are
the perfect examples in this case!

PLUGIN SETTINGS

Most plugins feature a settings page. This helps users confi gure the plugin to act in different ways
without actually modifying the code behind the plugin by saving various option settings. The fi rst
step in this process is saving and retrieving options in WordPress.

Saving Plugin Options

Chances are that, when building a plugin, you will need to save some options for your plugin.
WordPress features some very easy-to-use functions to save, edit, and delete options. Two functions
are available for creating options: add_option() and update_option(). Both functions create
options, but update_option() also updates the option if it already exists. Here’s an example of
adding a new option:

<?php add_option('prowp_display_mode', 'Fright Night'); ?>

The fi rst parameter you send to the add_option() function is the name of your option. This is a
required fi eld and must be unique from all other options saved in WordPress, including from other
plugins. The second parameter is the option value. This is also a required fi eld and can be a string,
an array, an object, or a serialized value. You can also use update_option() to create new options.
This function checks whether the option exists fi rst, and if not creates it. If, however, the option already
exists, it updates the value with the new option value you are sending in. You call the update_option()
function exactly as you did when adding an option like so:

<?php update_option('prowp_display_mode', 'Fright Night'); ?>

c08.indd 156c08.indd 156 12/6/12 1:19 AM12/6/12 1:19 AM

http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Filter_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://codex.wordpress.org/Plugin_API/Action_Reference
http://wordpress.org/extend/plugins/
http://wordpress.org/extend/plugins/
http://WordPress.org

Plugin Settings ❘ 157

Generally, the update_option() function is used for both adding and updating options in plugins.
It’s much easier to stay consistent with one function call for both rather than calls to different
functions for adding and updating your plugin options.

Retrieving an option value is just as easy. To retrieve any option, use the get_option() function, as
shown here:

<?php echo get_option('prowp_display_mode'); ?>

The only required fi eld for get_option() is the name of the option you want to retrieve. If the
option exists, it is returned to display or it is stored in a variable. If the option doesn’t exist,
the function returns FALSE.

Options can be deleted as easily as they are created. To delete an option, use the delete_option()
function. The only parameter is the option name that you want to delete:

<?php delete_option('prowp_display_mode'); ?>

A good rule of thumb is to start all of your option names with the same prefi x, like prowp_ in
the preceding examples. This is useful for a couple of reasons: uniqueness and readability. Using a
prefi x will help validate the uniqueness of your option names. If you have a number of options, it is
a smart idea to store them in an array (see the next section). This also makes it much easier to follow
your code logic when there is a set naming convention used on variables, functions, and so on.

Options in WordPress are not reserved for just plugins. Themes can also create options to store
specifi c theme data. Many of the themes available today offer a settings page, enabling you to
customize the theme through settings rather than code.

Array of Options

Every option you create in WordPress adds a new record to the wp_options database table. Because
of this, it’s a smart idea to store your options in an array, thus creating fewer records in the database
and fewer update_option() calls you need to make.

<?php
$prowp_options_arr = array(
 'prowp_display_mode' => 'Fright Night',
 'prowp_default_browser' => 'Chrome',
 'prowp_favorite_book' => 'Professional WordPress',
);

update_option('prowp_plugin_options', $prowp_options_arr);
?>

In this code, you are creating an array to store your plugin option values. So rather than call
update_option() three times, and save three records in the database, you need to call it only once
and save your array to the option named prowp_plugin_options. This is a small example but
imagine a collection of plugins that store 50 options to the database’s options table. That would
really start to clutter up your options table and would most likely slow down your website load
speeds due to the repeated database query options to fetch or set those options individually.

c08.indd 157c08.indd 157 12/6/12 1:19 AM12/6/12 1:19 AM

158 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

To retrieve the array of options, you use the same get_option() function as before:

<?php
$prowp_options_arr = get_option('prowp_plugin_options');

$prowp_display_mode = $prowp_options_arr['prowp_display_mode'];
$prowp_default_browser = $prowp_options_arr['prowp_default_browser'];
$prowp_favorite_book = $prowp_options_arr['prowp_favorite_book'];
?>

The next section discusses how to create a menu for your plugin settings page.

Creating a Menu and Submenus

WordPress features two different ways to create a custom menu for your plugin. The fi rst thing
you’ll want to decide is where to locate your options page. The options page link can be located in
its own top-level menu (My Plugin Settings), or as a submenu item of an existing menu (Settings ➪
My Plugin Settings). This section explores both methods and how to confi gure each.

Creating a Top-Level Menu

The fi rst method you’ll explore is creating a new top-level menu. Using a top-level menu is useful if
your plugin has multiple settings pages that need to be separate. To create your own top-level menu,
you’ll use the add_menu_page function, as shown here:

<?php add_menu_page(page_title, menu_title, capability,
menu_slug, function, icon_url, position); ?>

Here’s a breakdown of the parameters allowed:

 ➤ page_title — Text used for the HTML title (between <title> tags).

 ➤ menu_title — Text used for the menu name in the Dashboard.

 ➤ capability — Minimum user capability required to see menu.

 ➤ menu_slug — Unique slug name for your menu.

 ➤ function — Displays page content for the menu settings page.

 ➤ icon_url — Path to custom icon for menu (default: images/generic.png).

 ➤ position — The position in the menu order the menu should appear. By default, the menu
will appear at the bottom of the menu structure.

You can also create submenu items for your new menu. You use the add_submenu_page() function
to create additional submenu items:

add_submenu_page(parent, page_title, menu_title, capability,
menu_slug,[function]);

Create a custom menu for a plugin with multiple submenu items, as shown in Figure 8-3.

c08.indd 158c08.indd 158 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Settings ❘ 159

<?php
// create custom plugin settings menu
add_action('admin_menu', 'prowp_create_menu');

function prowp_create_menu() {

 //create new top-level menu
 add_menu_page('Halloween Plugin Page', 'Halloween Plugin',
 'manage_options', 'prowp_main_menu', 'prowp_main_plugin_page',
 plugins_url('/images/wordpress.png', __FILE__));

 //create two sub-menus: settings and support
 add_submenu_page('prowp_main_menu', 'Halloween Settings Page',
 'Settings', 'manage_options', 'halloween_settings',
'prowp_settings_page');
 add_submenu_page('prowp_main_menu', 'Halloween Support Page',
 'Support', 'manage_options', 'halloween_support', 'prowp_support_page');

}
?>

First you call the admin_menu Action hook. This hook is triggered
after the basic admin panel menu structure is in place. Once triggered, you
call your custom function prowp_create_menu() to build your menu.

To create your menu, you call the add_menu_page() function. The fi rst two
parameters set your page title and menu title. You also set the capability level
to manage_options so only an admin will see this new menu. Next, you
set the menu slug to propwp_main_menu, which is the unique slug for your
menu. Your custom menu function name is next, in this case prowp_main_
plugin_page. Remember that you haven’t created this function yet so when
viewing the settings page, you will get a PHP warning. Finally, you set the
custom icon location to display the WordPress logo.

Now that you’ve created your top-level menu, you need to create your submenu items. In this
example, you are creating two submenu items: Settings and Support. To do this, you use the
add_submenu_page() function.

The fi rst parameter you send is the menu slug of the top-level menu you want this to fall under.
Remember that you set this to prowp_main_menu, which is a unique slug for your plugin menu.
Next, you set the page title and menu title just like before. You also set the access level for viewing
to manage_options. You also have to create a unique menu slug for your submenu items; in this
example, you’ll use a custom named value, halloween_settings and halloween_support.
The fi nal value is the custom function to build the settings page for each submenu.

Adding to an Existing Menu

Next, you’ll explore how to add a submenu item to an existing menu in WordPress. Most plugins
have only one options page and therefore do not require an entirely separate top-level menu. To

FIGURE 8-3: Custom

top-level menu

c08.indd 159c08.indd 159 12/6/12 1:19 AM12/6/12 1:19 AM

160 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

accomplish this, you can add a plugin option page to any existing menu in WordPress. Add a
submenu to the Setting menu:

<?php
add_action('admin_menu', 'prowp_create_settings_submenu');

function prowp_create_settings_submenu() {
 add_options_page('Halloween Settings Page', 'Halloween Settings',
 'manage_options', 'halloween_settings_menu', 'prowp_settings_page');
}
?>

WordPress features multiple functions to make adding submenus extremely easy. To add your
Halloween Settings submenu you use the add_options_page() function. The fi rst parameter is the
page title followed by the submenu display name. Like your other menus, you set the capability to
manage_options, so the menu is viewable only by administrators. Next, you set the unique menu
handle to halloween_settings_menu. Finally, you call your custom prowp_settings_page()
function to build your options page. The preceding example adds your custom submenu item
Halloween Settings at the bottom of the settings menu.

Following is a list of the available submenu functions in WordPress. Each function can be used
exactly as the preceding example; just swap out the function name called with one of the functions
listed here:

 ➤ add_dashboard_page() — Adds submenu items to the Dashboard menu

 ➤ add_posts_page() — Adds submenu items to the Posts menu

 ➤ add_media_page() — Adds a submenu item to the Media menu

 ➤ add_links_page() — Adds a submenu item to the Links menu

 ➤ add_pages_page() — Adds a submenu item to the Pages menu

 ➤ add_comments_page() — Adds a submenu item to the Comments menu

 ➤ add_plugins_page() — Adds a submenu item to the Plugins menu

 ➤ add_theme_page() — Adds a submenu item to the Appearance menu

 ➤ add_users_page() — Adds a submenu item to the Users page (or Profi le based on role)

 ➤ add_management_page() — Adds a submenu item to the Tools menu

 ➤ add_options_page() — Adds a submenu item to the Settings menu

Now that you’ve created your menu and submenu items, you need to create an options page to dis-
play your plugin confi guration.

Creating an Options Page

WordPress 2.7 introduced a new Settings API that you will be using for all of the option methods
you use in this section. The Settings API is a powerful set of functions to help make saving options
in WordPress easy and secure. One of the major benefi ts of the Settings API is that WordPress
handles the security checks, meaning you don’t need to include a nonce in your form.

c08.indd 160c08.indd 160 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Settings ❘ 161

The fi rst option page method you’ll explore is to create a unique option page for your top-level
menu. Remember that when using the add_menu_page() and add_submenu_page() functions, you
defi ned your menu item function name to display your options page. To create an options page,
you need to create this function to display your options. First set up your plugin menu:

<?php

// create custom plugin settings menu
add_action('admin_menu', 'prowp_create_menu');

function prowp_create_menu() {

 //create new top-level menu
 add_menu_page('Halloween Plugin Page', 'Halloween Plugin',
 'manage_options', 'prowp_main_menu', 'prowp_settings_page',
 plugins_url('/images/wordpress.png', __FILE__));

 //call register settings function
 add_action('admin_init', 'prowp_register_settings');

}
?>

Notice that you’ve added a new Action hook for admin_init to execute your prowp_register_
settings() function, as shown in the following code:

<?php
function prowp_register_settings() {

 //register our settings
 register_setting('prowp-settings-group', 'prowp_options',
 'prowp_sanitize_options');

}?>

Using the Setting API’s register_setting() function, you defi ne the option you are going to offer
on your plugin options page. Your settings page will have three options, but you are going to store
those three options in a single options array, so you only need to register a single setting here. The
fi rst parameter is the options group name. This required fi eld needs to be a group name to identify
all options in this set. The second parameter is the actual option name and must be unique. The
third parameter is a callback function to sanitize the option values. Now that you’ve registered your
options, you need to build your options page. To do so, you’ll create the prowp_settings_page()
function as called from your menu:

<?php
function prowp_settings_page() {
?>
 <div class="wrap">
 <h2>Halloween Plugin Options</h2>

 <form method="post" action="options.php">
 <?php settings_fields('prowp-settings-group'); ?>
 <?php $prowp_options = get_option('prowp_options'); ?>
 <table class="form-table">

c08.indd 161c08.indd 161 12/6/12 1:19 AM12/6/12 1:19 AM

162 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 <tr valign="top">
 <th scope="row">Name</th>
 <td><input type="text" name="prowp_options[option_name]"
 value="<?php echo esc_attr($prowp_options['option_name']); ?>" />
 </td>
 </tr>

 <tr valign="top">
 <th scope="row">Email</th>
 <td><input type="text" name="prowp_options[option_email]"
 value="<?php echo esc_attr($prowp_options['option_email']); ?>"
 /></td>
 </tr>

 <tr valign="top">
 <th scope="row">URL</th>
 <td><input type="text" name="prowp_options[option_url]"
 value="<?php echo esc_url($prowp_options['option_url']); ?>" />
 </td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary"
 value="Save Changes" />
 </p>

 </form>
 </div>
<?php
}
?>

As you can see, this looks like a standard form with a couple of noticeable differences. The <form>
tag must be set to post to options.php. Inside your form, you need to defi ne your settings group,
which you set to prowp-settings-group when you registered your settings. This establishes the
link between your options and their values. You do so with this line of code:

<?php settings_fields('prowp-settings-group'); ?>

Next, you’ll load the existing options array, if there are any, to the $prowp_options variable using
the get_option() function. You’ll use this variable to display the existing options that are set in
your form.

Then you build the table to display your form options. Notice the name of the form fi eld needs to be
in the format of option_name[field_name]. This is because you are storing all option values in a
single array.

<input type="text" name="prowp_options[option_email]"
 value="<?php echo esc_attr($prowp_options['option_email']); ?>" />

After you have displayed all of your form fi elds, you need to display a Submit button to post the
form and save your options. The fi nal step is to create the prowp_sanitize_options() function.
This function will be used to sanitize all data submitted in your plugin settings prior to saving in the

c08.indd 162c08.indd 162 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Settings ❘ 163

database. This is an extremely important step because unsanitized data could potentially open up a
security vulnerability in your plugin.

<?php
function prowp_sanitize_options($input) {

 $input['option_name'] = sanitize_text_field($input['option_name']);
 $input['option_email'] = sanitize_email($input['option_email']);
 $input['option_url'] = esc_url($input['option_url']);

 return $input;

}
?>

Notice how each option value is being sanitized with a specifi c function. The name option uses the
WordPress function sanitize_text_field() to strip any HTML, XML, and PHP tags from
the submitted value. You use the sanitize_email() WordPress function to sanitize the e-mail value
and esc_url() to sanitize the URL value.

That’s it! You have just created a very basic plugin options page using the Settings API in
WordPress. Listing 8-1 shows the entire code to build an options page.

LISTING 8-1: Building the Options Page (prowp2-settings-api-plugin.zip)

<?php
// create custom plugin settings menu
add_action('admin_menu', 'prowp_create_menu');

function prowp_create_menu() {

 //create new top-level menu
 add_menu_page('Halloween Plugin Page', 'Halloween Plugin',
 'manage_options', 'prowp_main_menu', 'prowp_settings_page',
 plugins_url('/images/wordpress.png', __FILE__));

 //call register settings function
 add_action('admin_init', 'prowp_register_settings');

}

function prowp_register_settings() {

 //register our settings
 register_setting('prowp-settings-group',
 'prowp_options', 'prowp_sanitize_options');

}

function prowp_sanitize_options($input) {

 $input['option_name'] =
 sanitize_text_field($input['option_name']);

continues

c08.indd 163c08.indd 163 12/6/12 1:19 AM12/6/12 1:19 AM

164 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 $input['option_email'] = sanitize_email($input['option_email']);
 $input['option_url'] = esc_url($input['option_url']);

 return $input;

}

function prowp_settings_page() {
?>
 <div class="wrap">
 <h2>Halloween Plugin Options</h2>

 <form method="post" action="options.php">
 <?php settings_fields('prowp-settings-group'); ?>
 <?php $prowp_options = get_option('prowp_options'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row">Name</th>
 <td><input type="text" name="prowp_options[option_name]"
 value="<?php echo esc_attr($prowp_options['option_name']);?>
 " /></td>
 </tr>

 <tr valign="top">
 <th scope="row">Email</th>
 <td><input type="text" name="prowp_options[option_email]"
 value="<?php echo esc_attr($prowp_options['option_email']); ?>
 " /></td>
 </tr>

 <tr valign="top">
 <th scope="row">URL</th>
 <td><input type="text" name="prowp_options[option_url]"
 value="<?php echo esc_url($prowp_options['option_url']); ?>" />
 </td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary" value="Save Changes" />
 </p>

 </form>
 </div>
<?php
}
?>

The second option page method is to add your plugin settings to an existing Settings page in
WordPress, as shown in Figure 8-4. You will also be using the WordPress Settings API functions to
hook into these pages and add your plugin settings.

LISTING 8-1 (continued)

c08.indd 164c08.indd 164 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Settings ❘ 165

Now look over at the code to create your custom settings section. In the following example, you are
going to add a new settings section at the bottom of the Settings ➪ Reading Settings page. This
section will contain options for your plugin.

<?php
//execute our settings section function
add_action('admin_init', 'prowp_settings_init');

function prowp_settings_init() {

 //create the new setting section on the Settings > Reading page
 add_settings_section('prowp_setting_section', 'Halloween Plugin Settings',
 'prowp_setting_section', 'reading');

 // register the individual setting options
 add_settings_field('prowp_setting_enable_id', 'Enable Halloween Feature?',
 'prowp_setting_enabled', 'reading', 'prowp_setting_section');

 add_settings_field('prowp_saved_setting_name_id', 'Your Name',
 'prowp_setting_name', 'reading', 'prowp_setting_section');

 // register the setting to store our array of values
 register_setting('reading', 'prowp_setting_values');

}
?>

FIGURE 8-4: Custom settings section

c08.indd 165c08.indd 165 12/6/12 1:19 AM12/6/12 1:19 AM

166 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

First, you use the admin_init Action hook to load your custom function prowp_settings_init()
before any admin page is rendered. Next, you call the add_settings_section() function to create
your new section:

<?php
add_settings_section('prowp_setting_section', 'Halloween Plugin Settings',
 'prowp_setting_section', 'reading');
?>

The fi rst parameter passed is a unique ID for the section. The second parameter is the display name
output on the page. Next, you pass in the callback function name to display the actual section itself.
The fi nal parameter sets what settings page to add your section to. The accepted default WordPress
values are general, writing, reading, discussion, media, privacy, and permalink.

<?php
 // register the individual setting options
 add_settings_field('prowp_setting_enable_id', 'Enable Halloween Feature?',
 'prowp_setting_enabled', 'reading', 'prowp_setting_section');

 add_settings_field('prowp_saved_setting_name_id', 'Your Name',
 'prowp_setting_name', 'reading', 'prowp_setting_section');
?>

Now that you’ve registered your custom settings section, you need to register your individual set-
ting options. To do this, you’ll be using the add_settings_field() function. The fi rst parameter
you are passing is a unique ID for the fi eld. Next, you pass in the title of the fi eld, which is dis-
played directly to the left of the option fi eld. The third parameter is the callback function name,
which you’ll use to display your option fi eld. The fourth parameter is the settings page where the
fi eld should be displayed. The fi nal parameter is the name of the section you are adding the fi eld to,
which in this example is the prowp_setting_section you created with the add_setting_
section() function call.

<?php
register_setting('reading', 'prowp_setting_values', 'prowp_sanitize_settings');
?>

Next, you need to register your setting fi eld. In this example, you are going to register two different
settings: one for an enable/disable check box and one for the user’s name. Even though you have
two setting fi elds, you are going to store both values in an array, so you only need to register one
setting called prowp_setting_values. The fi rst parameter you pass is the option group. In this
example, you are saving your options in the reading group with the rest of the reading options. The
second parameter is the option name. The option name should be unique and is used to retrieve
the value of the option. A third optional parameter can be set for a custom function used to sanitize the
option values. In this example, you’ll create a function called prowp_sanitize_settings() to
sanitize the option values entered by the user.

<?php
function prowp_sanitize_settings($input) {

 $input['enabled'] = ($input['enabled'] == 'on') ? 'on' : '';

c08.indd 166c08.indd 166 12/6/12 1:19 AM12/6/12 1:19 AM

Plugin Settings ❘ 167

 $input['name'] = sanitize_text_field($input['name']);

 return $input;

}
?>

As always, you’ll want to sanitize all option values that are entered by the user. The enabled option
is a check box, and therefore can only be one of two values: either checked or not. The preceding
example uses a PHP ternary operator to determine the value of Enabled. If the check box equals
“on,” you know the value is enabled and should save the option value as “on.” If not, the option will
save the value as empty, which means the check box is not checked. Now that you’ve registered
your setting section, you need to create your custom functions to display it. The fi rst function you’ll
create is the prowp_setting_section() that you called in when you created your setting section:

<?php
function prowp_setting_section() {
 echo '<p>Configure the Halloween plugin options below</p>';
}
?>

This is where you can set the subheading for your settings section. This section is great for plugin
instructions, confi guration information, and more. Next, you need to create the function to display
your fi rst settings fi eld, Enabled:

<?php

function prowp_setting_enabled() {

 //load plugin options
 $prowp_options = get_option('prowp_setting_values');

 //display the checkbox form field
 echo '<input '.checked($prowp_options['enabled'], 'on', false).'
 name="prowp_setting_values[enabled]" type="checkbox" /> Enabled';

}
?>

This is the callback function you defi ned when you used the add_settings_field() function. The
fi rst step is to load the options array if it exists. Because this option is a check box, you know that
if it is set, the check box should be checked. In this example, you’ll use the checked() WordPress
function. This function has three parameters. The fi rst and second parameters are two values to
compare. If the two values are the same, the function will echo checked="checked" thus checking
the form element. The third parameter determines whether to echo the value or just return it. In this
case, you just want to return it so you set that value to False.

Next, you display the actual setting fi eld that will be used in the setting section. Your fi eld input
name needs to be the same setting name you registered previously. Because you are saving your
options as an array, you need to defi ne the array name value; in this example, it’s prowp_
setting_values[enabled]. This is how the Settings API knows what option to save and where.

c08.indd 167c08.indd 167 12/6/12 1:19 AM12/6/12 1:19 AM

168 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Your Enabled check box fi eld will display at the bottom of the Settings ➪ Reading page. Now you
need to create the function for your second setting fi eld:

<?php

function prowp_setting_name() {

 //load the option value
 $prowp_options = get_option('prowp_setting_values');

 //display the text form field
 echo '<input type="text" name="prowp_setting_values[name]"
 value="'.esc_attr($prowp_options['name']).'" />';

}
?>

As with your check box option, the fi rst thing to do is load the current option value. Then you
display your input text fi eld with the same name as defi ned previously in the register_setting()
function. As always, be sure to escape the value before displaying in the form fi eld.

That’s it! You have successfully created your custom settings section and added it to the Settings ➪
Reading SubPanel. Listing 8-2 shows the full code.

LISTING 8-2: Custom Settings Section (prowp2-reading-settings-plugin.zip)

<?php

//execute our settings section function
add_action('admin_init', 'prowp_settings_init');

function prowp_settings_init() {

 //create the new setting section on the Settings > Reading page
 add_settings_section('prowp_setting_section',
 'Halloween Plugin Settings', 'prowp_setting_section',
 'reading');

 // register the individual setting options
 add_settings_field('prowp_setting_enable_id', 'Enable Halloween Feature?',
 'prowp_setting_enabled', 'reading', 'prowp_setting_section');

 add_settings_field('prowp_saved_setting_name_id', 'Your Name',
 'prowp_setting_name', 'reading', 'prowp_setting_section');

 // register the setting to store our array of values
 register_setting('reading', 'prowp_setting_values',
 'prowp_sanitize_settings');

}

function prowp_sanitize_settings($input) {

 $input['enabled'] = ($input['enabled'] == 'on') ? 'on' : '';

c08.indd 168c08.indd 168 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 169

 $input['name'] = sanitize_text_field($input['name']);

 return $input;

}

// settings section
function prowp_setting_section() {
 echo '<p>Configure the Halloween plugin options below</p>';
}

// create the enabled checkbox option to save the checkbox value
function prowp_setting_enabled() {

 //load plugin options
 $prowp_options = get_option('prowp_setting_values');

 //display the checkbox form field
 echo '<input '.checked($prowp_options['enabled'], 'on', false)
 .' name="prowp_setting_values[enabled]" type="checkbox" />
 Enabled';

}

// create the text field setting to save the name
function prowp_setting_name() {

 //load the option value
 $prowp_options = get_option('prowp_setting_values');

 //display the text form field
 echo '<input type="text" name="prowp_setting_values[name]"
 value="'.esc_attr($prowp_options['name']).'" />';

}
?>

WORDPRESS INTEGRATION

Integrating your plugin into WordPress is an essential step for users to interact with your plugin in
the admin dashboard. WordPress features many different areas where your plugin can be integrated,
including a meta box, sidebar, and dashboard widgets, and custom shortcodes.

Creating a Meta Box

WordPress features multiple meta boxes on the Add New Post and Page screens. These meta boxes
are used for adding additional information to your posts, pages, and content.

Meta boxes can be created in a plugin using the add_meta_box() function in WordPress. This
function accepts seven parameters, as shown here:

<?php add_meta_box($id, $title, $callback, $page, $context, $priority,
$callback_args); ?>

c08.indd 169c08.indd 169 12/6/12 1:19 AM12/6/12 1:19 AM

170 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Each parameter helps defi ne where and how your meta box is displayed.

 ➤ $id: The CSS ID attribute for the meta box

 ➤ $title: The title displayed in the header of the meta box

 ➤ $callback: The custom function name to display your meta box information

 ➤ $page: The page you want your meta box to display on ('post', 'page',, or custom post
type name)

 ➤ $context: The part of the page where the meta box should be displayed ('normal',
'advanced', or 'side')

 ➤ $priority: The priority within the context where the meta box should display ('high',
'core', 'default', or 'low')

 ➤ $callback_args: Arguments to pass into your callback function

Now that you understand the add_meta_box() function, you can build your fi rst custom meta box
in WordPress:

<?php
add_action('add_meta_boxes', 'prowp_meta_box_init');

// meta box functions for adding the meta box and saving the data
function prowp_meta_box_init() {

 // create our custom meta box
 add_meta_box('prowp-meta', 'Product Information',
 'prowp_meta_box', 'post', 'side', 'default');

}
?>

The fi rst step to adding your own meta box is to use the add_meta_boxes Action hook to execute
your custom function prowp_meta_box_init(). In this function, you will call the add_meta_box()
function to create your custom meta box for Product Information.

You set the CSS ID attribute to prowp-meta for your meta box. The second parameter is the title,
which you set to Product Information. The next parameter is your custom function prowp_meta_
box(), which will display the HTML for your meta box. Next you defi ne your meta box to display
on the post page and in the sidebar. Finally, you set the priority to default. Now create your cus-
tom prowp_meta_box() function to display your meta box fi elds:

function prowp_meta_box($post, $box) {

 // retrieve the custom meta box values
 $prowp_featured = get_post_meta($post->ID, '_prowp_type', true);
 $prowp_price = get_post_meta($post->ID, '_prowp_price', true);

 //nonce for security
 wp_nonce_field(plugin_basename(__FILE__), 'prowp_save_meta_box');

 // custom meta box form elements
 echo '<p>Price: <input type="text" name="prowp_price"

c08.indd 170c08.indd 170 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 171

 value="'.esc_attr($prowp_price).'" size="5" /></p>';
 echo '<p>Type:
 <select name="prowp_product_type" id="prowp_product_type">
 <option value="0" '
 .selected($prowp_featured, 'normal', false). '>Normal
 </option>
 <option value="special" '
 .selected($prowp_featured, 'special', false). '>Special
 </option>
 <option value="featured" '
 .selected($prowp_featured, 'featured', false). '>Featured
 </option>
 <option value="clearance" '
 .selected($prowp_featured, 'clearance', false). '>Clearance
 </option>
 </select></p>';

}

The fi rst step in your custom function is to retrieve the saved values
for your meta box. If you are creating a new post, there won’t be any
saved values yet. Next you display the form elements in your meta
box. Notice that you don’t need any <form> tags or a submit button.
Also notice that you are using the wp_nonce_field() function to
create a custom nonce fi eld in your form.

The custom function you just created will generate your custom meta
box, as shown in Figure 8-5.

Now that you have your meta box and form elements, you need to
save that data when your post is saved. To do so, you’ll create a
custom function, prowp_save_meta_box(), which is triggered by
the save_post Action hook:

<?php
// hook to save our meta box data when the post is saved
add_action('save_post', 'prowp_save_meta_box');

function prowp_save_meta_box($post_id) {

 // process form data if $_POST is set
 if(isset($_POST['prowp_product_type'])) {

 // if auto saving skip saving our meta box data
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE)
 return;

 //check nonce for security
 check_admin_referer(plugin_basename(__FILE__), 'prowp_save_meta_box');

 // save the meta box data as post meta using the post ID as a unique prefix
 update_post_meta($post_id, '_prowp_type',
 sanitize_text_field($_POST['prowp_product_type']));
 update_post_meta($post_id, '_prowp_price',

FIGURE 8-5: Custom meta

box

c08.indd 171c08.indd 171 12/6/12 1:19 AM12/6/12 1:19 AM

172 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 sanitize_text_field ($_POST['prowp_price']));

 }

}
?>

The save_post Action hook runs whenever a post is saved in WordPress. Because you only want
to work with the custom metadata in the meta box, the fi rst thing you’ll do is verify that the
$_POST['prowp_product_type'] value is set. Next, you need to verify that the post being saved is
an active post and not an auto save. To do so, you check that the post is not auto-saving and, if so,
you exit the function. The next step is to verify that the nonce value is the expected value. If the post
is active and your form elements have been set, you save the form data. Once all checks have passed,
you use update_post_meta() to save your meta box data as metadata against your post.

As you can see, you send in the post ID as the fi rst parameter to update_post_meta(). This tells
WordPress what post the meta data will be attached to. Next, you pass in the name of the meta key
you are updating. Notice the meta key name is prefi xed with an underscore. This prevents these
values from being listed in the custom fi elds meta box on the post edit screen. Because you’ve
provided a UI to edit these values, you don’t need them in the custom fi elds box. The fi nal
parameter you send is the new value for the meta key, which is being sanitized using the
sanitize_text_field() WordPress function.

You now have a fully functional custom meta box that saves individual data against each post.
Listing 8-3 shows the full custom meta box code.

LISTING 8-3: Custom Meta Box (prowp2-custom-meta-box.zip)

<?php
add_action('add_meta_boxes', 'prowp_meta_box_init');

// meta box functions for adding the meta box and saving the data
function prowp_meta_box_init() {

 // create our custom meta box
 add_meta_box('prowp-meta', 'Product Information',
 'prowp_meta_box', 'post', 'side', 'default');

}

function prowp_meta_box($post, $box) {

 // retrieve the custom meta box values
 $prowp_featured = get_post_meta($post->ID, '_prowp_type', true);
 $prowp_price = get_post_meta($post->ID, '_prowp_price', true);

 //nonce for security
 wp_nonce_field(plugin_basename(__FILE__), 'prowp_save_meta_box');

 // custom meta box form elements
 echo '<p>Price: <input type="text" name="prowp_price"
 value="'.esc_attr($prowp_price).'" size="5" /></p>';

c08.indd 172c08.indd 172 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 173

 echo '<p>Type:
 <select name="prowp_product_type" id="prowp_product_type">
 <option value="0" '
 .selected($prowp_featured, 'normal', false)
 . '>Normal</option>
 <option value="special" '
 .selected($prowp_featured, 'special', false)
 . '>Special</option>
 <option value="featured" '
 .selected($prowp_featured, 'featured', false)
 . '>Featured</option>
 <option value="clearance" '
 .selected($prowp_featured, 'clearance', false)
 . '>Clearance</option>
 </select></p>';

}

// hook to save our meta box data when the post is saved
add_action('save_post', 'prowp_save_meta_box');

function prowp_save_meta_box($post_id) {

 // process form data if $_POST is set
 if(isset($_POST['prowp_product_type'])) {

 // if auto saving skip saving our meta box data
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE)
 return;

 //check nonce for security
 check_admin_referer(
 plugin_basename(__FILE__), 'prowp_save_meta_box');

 // save the meta box data as post meta using the post ID as a unique prefix
 update_post_meta($post_id, '_prowp_type',
 sanitize_text_field($_POST['prowp_product_type']));
 update_post_meta($post_id, '_prowp_price',
 sanitize_text_field($_POST['prowp_price']));

 }

}
?>

Now that you’ve saved your meta box data, you’ll probably want to display it somewhere. You can
easily display your saved meta box data in your theme using the get_post_meta function inside the
Loop like so:

<?php
 $prowp_type = get_post_meta($post->ID, '_prowp_type', true);
 $prowp_price = get_post_meta($post->ID, '_prowp_price', true);

 echo '<p>Price: ' .esc_html($prowp_price). '</p>';
 echo '<p>Type: ' .esc_html($prowp_type). '</p>';
?>

c08.indd 173c08.indd 173 12/6/12 1:19 AM12/6/12 1:19 AM

174 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Adding a custom meta box is a great way to extend the data on posts and pages and is very intuitive
for users as well.

Shortcodes

WordPress features a Shortcode API that can be used to easily create shortcode functionality in your
plugins. Shortcodes are basically text macro codes that can be inserted into a post, page, or custom
post type. When being displayed, these shortcodes are replaced by some other type of content. Look
at a simple example using the Shortcode API:

<?php
add_shortcode('mytwitter', 'prowp_twitter');

function prowp_twitter() {

 return '@williamsba';

}
?>

Now any time you use the [mytwitter] shortcode in your content, it will be replaced with an
HTML link to my Twitter account when displayed in the browser. As you can see, this is a very
powerful feature in WordPress, which many plugins out there currently take advantage of, often
inserting small pieces of JavaScript to place a button or advertisement in the specifi c spot in a post.

Shortcodes can also be confi gured to accept attributes. This is very useful for passing arguments
to your custom functions, thereby altering the output of the shortcode based on those arguments.
Modify your shortcode function to accept a site parameter:

<?php
add_shortcode('mytwitter', 'prowp_twitter');

function prowp_twitter($atts, $content = null) {

 extract(shortcode_atts(array(
 'person' => 'brad' // set attribute default
), $atts));

 if ($person == 'brad') {
 return '@williamsba';
 }elseif ($person == 'david') {
 return '@mirmillo';
 }elseif ($person == 'hal') {
 return '@freeholdhal';
 }
}
?>

This code creates the same shortcode as before, but now you are defi ning an attribute called
person. With this attribute, you can specify which person you want to display a Twitter link for. To
display the Twitter URL for David, you would use the shortcode[mytwitter person="david"].
Alternatively, you can also easily display the Twitter URL for Hal like so: [mytwitter
person="hal"]. Shortcodes can also accept multiple attributes from the array set in your shortcode
function.

c08.indd 174c08.indd 174 12/6/12 1:19 AM12/6/12 1:19 AM

http://twitter.com/williamsba
http://twitter.com/williamsba
http://twitter.com/mirmillo
http://twitter.com/freeholdhal

WordPress Integration ❘ 175

Creating a Widget

Widgets are a common feature included in many WordPress plugins. By creating a widget with your
plugin, you can easily give users a way to add your plugin information to their sidebar or other
widgetized areas.

To understand how widgets work, it’s helpful to view an overview of the WP_Widget class in
WordPress. The widget class features built-in functions for building a widget, each with a specifi c
purpose, as shown in the following code:

<?php
class My_Widget extends WP_Widget {
 function My_Widget() {
 // process the widget
 }

 function form($instance) {
 // widget form in admin dashboard
 }

 function update($new_instance, $old_instance) {
 // save widget options
 }

 function widget($args, $instance) {
 // display the widget
 }
}
?>

As an example, you’ll create a basic bio widget. This widget will allow you to set a person’s name
and custom bio to display in a widgetized sidebar in WordPress.

The fi rst step in creating your own widget is to use the appropriate hook to initialize your widget.
This hook is called widgets_init and is triggered right after the default WordPress widgets have
been registered:

add_action('widgets_init', 'prowp_register_widgets');

function prowp_register_widgets() {

 register_widget('prowp_widget');

}

Calling the Action hook widgets_init executes the function prowp_register_widgets(), as
shown in the preceding code. Here you register your widget called pro_widget. You could also
register multiple widgets in this function if needed.

The revamped Widget API released with WordPress 2.8 makes creating a widget much easier than
before. To begin, you have to extend the preexisting WP_Widget class by creating a new class with a
unique name, as shown here:

class prowp_widget extends WP_Widget {

c08.indd 175c08.indd 175 12/6/12 1:19 AM12/6/12 1:19 AM

176 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Next, you’ll add your fi rst function, which should be the same name as your unique class name.
This is referred to as the constructor:

function prowp_widget() {

 $widget_ops = array(
 'classname' => 'prowp_widget_class',
 'description' => 'Example widget that displays a user\'s bio.');
 $this->WP_Widget('prowp_widget', 'Bio Widget', $widget_ops);

}

In your prowp_widget() function, you defi ne your classname for your widget. The classname is the
CSS class that will be added to the HTML tag wrapping the widget when it’s displayed. Depending
on the theme the CSS class may be in a <div>, <aside>, , or other HTML tag. You also set
the description for your widget. This is displayed on the widget dashboard below the widget name.
These options are then passed to WP_Widget. You also pass the CSS ID name (prowp_widget_
class) and the widget name (Bio Widget).

Next you need to create the function to build your widget settings form. Widget settings are located
on the widget admin page upon expanding any widget listed on a sidebar. The widget class makes
this process very easy, as shown in the following code:

function form($instance) {
 $defaults = array(
 'title' => 'My Bio',
 'name' => 'Michael Myers',
 'bio' => '');
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance['title'];
 $name = $instance['name'];
 $bio = $instance['bio'];
 ?>
 <p>Title:
 <input class="widefat"
 name="<?php echo $this->get_field_name('title'); ?>"
 type="text" value="<?php echo esc_attr($title); ?>" /></p>
 <p>Name:
 <input class="widefat"
 name="<?php echo $this->get_field_name('name'); ?>"
 type="text" value="<?php echo esc_attr($name); ?>" /></p>
 <p>Bio:
 <textarea class="widefat"
 name="<?php echo $this->get_field_name('bio'); ?>" >
 <?php echo esc_textarea($bio); ?></textarea></p>
 <?php
}

The fi rst thing you do is defi ne your default widget values. If the user doesn’t fi ll in the settings, you
can default these values to whatever you like. In this case, you’re setting the default title to My Bio
and default name to Michael Myers. Next, you pull in the instance values, which are your widget
settings. If the widget was just added to a sidebar, there are no settings saved so these values will be
empty. Finally, you display the three form fi elds for your widget settings: title, name, and bio. The

c08.indd 176c08.indd 176 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 177

fi rst two values are using text input boxes and the bio value is using a text area box. Notice that you
don’t need <form> tags or a submit button; the widget class will handle this for you. Remember to
use the appropriate escaping functions when displaying your data, in this case esc_attr() for the
two text fi elds and esc_textarea() for the text area fi eld. Next, you need to save your widget
settings using the update() widget class function:

function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance['title'] = sanitize_text_field($new_instance['title']);
 $instance['name'] = sanitize_text_field($new_instance['name']);
 $instance['bio'] = sanitize_text_field($new_instance['bio']);

 return $instance;

}

This function is pretty straightforward. You’ll notice you don’t need to save the settings yourself, the
widget class does it for you. You pass in the $new_instance values for each of your setting fi elds.
You’re also using sanitize_text_field() to strip out any HTML that might be entered. If you
want to accept HTML values, you’d use wp_kses() instead, which was covered earlier in the, “Data
Validation and Sanitization,” section of this chapter.

The fi nal function in your prowp_widget class handles displaying your widget:

function widget($args, $instance) {
 extract($args);

 echo $before_widget;

 $title = apply_filters('widget_title', $instance['title']);
 $name = (empty($instance['name'])) ? ' ' : $instance['name'];
 $bio = (empty($instance['bio'])) ? ' ' : $instance['bio'];

 if (!empty($title)) { echo $before_title . esc_html($title)
 . $after_title; };
 echo '<p>Name: ' . esc_html($name) . '</p>';
 echo '<p>Bio: ' . esc_html($bio) . '</p>';

 echo $after_widget;

}

The fi rst thing you do is extract the $args parameter. This variable stores some global theme values
such as $before_widget and $after_widget. These variables can be used by theme developers to
customize what code will wrap your widget — for example, a custom <div> tag. After extracting
the $args parameter, you display the $before_widget variable. The $before_title and $after_
title are also set in this variable. This is useful for passing custom HTML tags to wrap the
widget title in.

Next, you display your widget values. The title is displayed fi rst and wrapped by $before_title
and $after_title. Next, you echo out the name and bio values. Remember to escape the widget
values for security reasons. Finally, you display the $after_widget value.

c08.indd 177c08.indd 177 12/6/12 1:19 AM12/6/12 1:19 AM

178 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

That’s it! You’ve just created a custom widget for your plugin using the widget class in WordPress.
Remember that by using the new widget class, you can add multiple copies of the same widget to the
sidebar or additional sidebars. Listing 8-4 shows the completed widget code.

LISTING 8-4: Custom Widget (prowp2-custom-widget.zip)

<?php

// use widgets_init Action hook to execute custom function
add_action('widgets_init', 'prowp_register_widgets');

 //register our widget
function prowp_register_widgets() {

 register_widget('prowp_widget');

}

//prowpwidget class
class prowp_widget extends WP_Widget {

 //process our new widget
 function prowp_widget() {

 $widget_ops = array(
 'classname' => 'prowp_widget_class',
 'description' => 'Example widget that
 displays a user\'s bio.');
 $this->WP_Widget('prowp_widget', 'Bio Widget',
 $widget_ops);

 }

 //build our widget settings form
 function form($instance) {
 $defaults = array(
 'title' => 'My Bio',
 'name' => 'Michael Myers',
 'bio' => '');
 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance['title'];
 $name = $instance['name'];
 $bio = $instance['bio'];
 ?>
 <p>Title:
 <input class="widefat" name="<?php
 echo $this->get_field_name('title');
 ?>" type="text"
 value="<?php echo esc_attr($title); ?>" /></p>
 <p>Name:
 <input class="widefat" name="<?php
 echo $this->get_field_name('name');

c08.indd 178c08.indd 178 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 179

 ?>" type="text"
 value="<?php echo esc_attr($name); ?>" /></p>
 <p>Bio:
 <textarea class="widefat"
 name="<?php echo $this->get_field_name('bio'); ?>"
 ><?php echo esc_textarea($bio); ?></textarea></p>
 <?php
 }

 //save our widget settings
 function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance['title'] =
 sanitize_text_field($new_instance['title']);
 $instance['name'] =
 sanitize_text_field($new_instance['name']);
 $instance['bio'] =
 sanitize_text_field($new_instance['bio']);

 return $instance;

 }

 //display our widget
 function widget($args, $instance) {
 extract($args);

 echo $before_widget;

 $title = apply_filters('widget_title', $instance['title']);
 $name = (empty($instance['name']))
 ? ' ' : $instance['name'];
 $bio = (empty($instance['bio']))
 ? ' ' : $instance['bio'];

 if (!empty($title)) { echo $before_title
 . esc_html($title) . $after_title; };
 echo '<p>Name: ' . esc_html($name) . '</p>';
 echo '<p>Bio: ' . esc_html($bio) . '</p>';

 echo $after_widget;

 }
}
?>

Creating a Dashboard Widget

WordPress 2.7 introduced Dashboard Widgets, which are the widgets displayed on the main
Dashboard of your WordPress installation. Along with these new widgets came the Dashboard
Widgets API, which allows you to create any custom Dashboard Widget that you would like.

c08.indd 179c08.indd 179 12/6/12 1:19 AM12/6/12 1:19 AM

180 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

To create a custom Dashboard Widget, you’ll use the wp_add_dashboard_widget() function, as
shown here:

<?php
add_action('wp_dashboard_setup', 'prowp_add_dashboard_widget');

// call function to create our dashboard widget
function prowp_add_dashboard_widget() {

 wp_add_dashboard_widget('prowp_dashboard_widget',
 'Pro WP Dashboard Widget', 'prowp_create_dashboard_widget');

}

// function to display our dashboard widget content
function prowp_create_dashboard_widget() {

 echo '<p>Hello World! This is my Dashboard Widget</p>';

}
?>

First you call the wp_dashboard_setup Action hook to execute the function to build your custom
Dashboard Widget. This hook is triggered after all of the default Dashboard Widgets have been
built. Next you execute the wp_add_dashboard_widget() function to create your Dashboard
Widget. The fi rst parameter is the widget ID slug. This is used for the CSS classname and the key in
the array of widgets. The next parameter is the display name for your widget. The fi nal parameter
you send is your custom function name to display your widget contents. An optional fourth parameter
can be sent for a control callback function. This function would be used to process any form
elements that might exist in your Dashboard Widget.

After executing the wp_add_dashboard_widget()
function your custom function is called to display your
widget contents. In this example, you display a
simple string. The result is a custom Dashboard
Widget, as shown in Figure 8-6.

Creating Custom Tables

WordPress contains a variety of tables in which to
store your plugin data. However, you might fi nd that
your plugin needs a custom table or two to store plugin data. This can be useful for more complex
plugins such as an e-commerce plugin, which stores order history, product and inventory data, and
other data that is accessed using database SQL semantics rather than the simple key and value
pairing of the options table.

The fi rst step in creating a custom database table is to create an installation function. You will
execute this function when the plugin is activated to create your new table.

FIGURE 8-6: Example dashboard widget

c08.indd 180c08.indd 180 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 181

<?php
register_activation_hook(__FILE__, 'prowp_install');

function prowp_install() {

}
?>

Now that you have an installation function, you need to defi ne your custom table name. Remember
that the table prefi x can be custom defi ned by the user in wp-config.php, and as discussed in
Chapter 10, WordPress Multisite can insert additional prefi x data into the table names so you need
to incorporate these table prefi xes for your custom table name. To get the table prefi x, you use the
global $wpdb->prefix value like so:

global $wpdb;

//define the custom table name
$table_name = $wpdb->prefix .'prowp_data';

This code stores your table named wp_prowp_data in the $table_name variable, assuming your
WordPress table prefi x is set to wp_.

Now it’s time to build your SQL query for creating your new table. You’ll create your query in a
variable called $sql before executing it. You also need to include the upgrade.php fi le prior to
executing your query like so:

$sql = "CREATE TABLE " .$table_name ." (
 id mediumint(9) NOT NULL AUTO_INCREMENT,
 time bigint(11) DEFAULT '0' NOT NULL,
 name tinytext NOT NULL,
 text text NOT NULL,
 url VARCHAR(55) NOT NULL,
 UNIQUE KEY id (id)
);";
require_once(ABSPATH . 'wp-admin/includes/upgrade.php');

//execute the query creating our table

dbDelta($sql);

After this executes, your new table has been created in the database. The dbDelta() function will
verify fi rst that the table you are creating doesn’t exist, so you don’t have to worry about checking
if a table exists before creating it. It’s also a good idea to save the version number for your database
table structure. This can help down the road if you upgrade your plugin and need to change
the table structure. You can check what table version the users have installed for your plugin and
determine if they need to upgrade:

$prowp_db_version = '1.0';

add_option('prowp_db_version', $prowp_db_version);

Look at the full function in action:

register_activation_hook(__FILE__, 'prowp_install');

function prowp_install() {

c08.indd 181c08.indd 181 12/6/12 1:19 AM12/6/12 1:19 AM

182 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 global $wpdb;

 //define the custom table name
 $table_name = $wpdb->prefix .'prowp_data';

 //build the query to create our new table
 $sql = "CREATE TABLE " .$table_name ." (
 id mediumint(9) NOT NULL AUTO_INCREMENT,
 time bigint(11) DEFAULT '0' NOT NULL,
 name tinytext NOT NULL,
 text text NOT NULL,
 url VARCHAR(55) NOT NULL,
 UNIQUE KEY id (id)
);";

 require_once(ABSPATH . 'wp-admin/includes/upgrade.php');

 //execute the query to create our table
 dbDelta($sql);

 //set the table structure version
 $prowp_db_version = '1.0';

 //save the table structure version number
 add_option('prowp_db_version', $prowp_db_version);

}

If you want to upgrade your table structure for a new version of your plugin, you can just compare
the table structure version numbers:

$installed_ver = get_option('gmp_db_version');

if($installed_ver != $prowp_db_version) {

 //update database table here

 //update table version
 update_option('gmp_db_version', $prowp_db_version);

}

Before creating a custom table for your plugin, you should consider whether this is the best method.
It’s generally a good idea to avoid creating custom tables unless there is no alternative. Remember
that you can easily store options in WordPress using the options API. You can also utilize the
wp_*meta tables for storing extended data about posts, pages, comments, and users. Custom post
types are also a great place to store data.

To work with a custom table once you’ve created it, you’ll need to use the WordPress database class,
as shown in Chapter 6.

Uninstalling Your Plugin

A nice feature to include with your plugin is an uninstall feature. WordPress features two ways to
register the uninstaller for your plugin: the uninstall.php method and the uninstall hook. Both
methods are executed when a deactivated plugin is deleted in the WordPress admin dashboard.

c08.indd 182c08.indd 182 12/6/12 1:19 AM12/6/12 1:19 AM

WordPress Integration ❘ 183

The fi rst method you’ll look at is the uninstall.php uninstaller method. This is the preferred
method for uninstalling a plugin. The fi rst step to using this method is to create an uninstall.php
fi le. This fi le must exist in the root directory of your plugin, and if it does, it will execute in
preference to the uninstall hook.

<?php
// If uninstall/delete not called from WordPress then exit
if(!defined('ABSPATH') && !defined('WP_UNINSTALL_PLUGIN'))
 exit();

// Delete option from options table
delete_option('prowp_options_arr');

// Delete any other options, custom tables/data, files
?>

The fi rst thing your uninstall.php fi le should check is that ABSPATH and WP_UNINSTALL_PLUGIN
constants have been defi ned, meaning they were actually called from WordPress. This is a security
measure to ensure this fi le is not executed except during the uninstall process of your plugin. The
next step is to remove any options and custom tables your plugin created. In a perfect uninstall
scenario there would be no trace of your plugin left over in the database once it had been uninstalled.
The preceding example uses delete_option() to delete the option array. Remember that once this
function runs, all custom plugin data saved will be destroyed.

The second method for uninstalling a plugin is to use the Uninstall hook. When a plugin is deleted,
and uninstall.php does not exist but the Uninstall hook does exist, the plugin will be run one
last time to execute the Uninstall hook. After the hook has been called, your plugin will be deleted.
Here’s the Uninstall hook in action:

<?php
register_uninstall_hook(__FILE__, 'prowp_uninstall_hook');

function prowp_uninstall_hook() {

 delete_option('prowp_options_arr');

 //remove any additional options and custom tables

}
?>

First you call your custom uninstall function to properly uninstall your plugin options. If you do
include uninstall functionality in your plugin, such as removing custom tables and options, make
sure to warn the users that all plugin data will be deleted if they delete the plugin.

The difference between this method and the register_deactivation_hook is that the
register_uninstall_hook is executed when a deactivated plugin is deleted. The register
_deactivation_hook is executed when the plugin is deactivated, which means the user may want to
activate the plugin again eventually. You wouldn’t want to delete all of the plugin settings if the user
is planning on using your plugin again.

c08.indd 183c08.indd 183 12/6/12 1:19 AM12/6/12 1:19 AM

184 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

CREATING A PLUGIN EXAMPLE

Now that you’ve seen the many different options WordPress provides for use in your plugins, you
can put that knowledge to work! In this example, you will utilize many of the features covered in
this chapter. At the end of this section, the entire plugin source code will be available.

The example plugin you are going to build is a basic Halloween Store. The goal of this plugin is to
create an easy way to add products to WordPress and display the products in your Halloween Store.
This plugin will include the following features:

 ➤ Settings page using the Settings API

 ➤ Widget for displaying newest products using the Widget class

 ➤ Post meta box for adding product metadata

 ➤ Shortcode support to easily display product data in a post

 ➤ Internationalization support using translation functions

The fi rst step in creating your plugin is to create your plugin fi les. For this plugin, you’ll have two
fi les: halloween-store.php and uninstall.php. Because your plugin contains two fi les, you’ll
need to save these fi les in a separate folder for your plugin named halloween-store. Next,
you need to set up your plugin header and license.

To start, you’ll be working in halloween-store.php. First you want to defi ne your plugin header,
as shown here:

<?php
/*
Plugin Name: Halloween Store
Plugin URI: http://webdevstudios.com/support/wordpress-plugins/
Description: Create a Halloween Store to display product information
Version: 1.0
Author: Brad Williams
Author URI: http://webdevstudios.com
License: GPLv2
*/

/* Copyright 2013 Brad Williams (email : brad@webdevstudios.com)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

c08.indd 184c08.indd 184 12/6/12 1:19 AM12/6/12 1:19 AM

http://webdevstudios.com/support/wordpress-plugins/
http://webdevstudios.com
mailto:brad@webdevstudios.com

Creating a Plugin Example ❘ 185

As you can see, you created the appropriate plugin header for your new plugin. Because you will be
releasing this plugin, you’ll want to include the GPL software license below your plugin header.

Next you are going to call the register_activation_hook() function to set up your default plugin
settings. Remember that this function is triggered when a user activates your plugin in WordPress.

// Call function when plugin is activated
register_activation_hook(__FILE__, 'halloween_store_install');

function halloween_store_install() {

 //setup default option values
 $hween_options_arr = array(
 'currency_sign' => '$'
);

 //save our default option values
 update_option('halloween_options', $hween_options_arr);

}

As you can see, this plugin will store an array of settings in a single option called halloween_
options. When the plugin is activated, you set the default currency_sign value to $.

Next, you call the init hook to register the custom post type for Products. This is how you will add
and manage your Halloween Store products.

// Action hook to initialize the plugin
add_action('init', 'halloween_store_init');

//Initialize the Halloween Store
function halloween_store_init() {

 //register the products custom post type
 $labels = array(
 'name' => __('Products', 'halloween-plugin'),
 'singular_name' => __('Product', 'halloween-plugin'),
 'add_new' => __('Add New', 'halloween-plugin'),
 'add_new_item' => __('Add New Product', 'halloween-plugin'),
 'edit_item' => __('Edit Product', 'halloween-plugin'),
 'new_item' => __('New Product', 'halloween-plugin'),
 'all_items' => __('All Products', 'halloween-plugin'),
 'view_item' => __('View Product', 'halloween-plugin'),
 'search_items' => __('Search Products', 'halloween-plugin'),
 'not_found' => __('No products found', 'halloween-plugin'),
 'not_found_in_trash' => __('No products found in Trash',
 'halloween-plugin'),
 'menu_name' => __('Products', 'halloween-plugin')
);

 $args = array(
 'labels' => $labels,
 'public' => true,
 'publicly_queryable' => true,
 'show_ui' => true,

c08.indd 185c08.indd 185 12/6/12 1:19 AM12/6/12 1:19 AM

186 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 'show_in_menu' => true,
 'query_var' => true,
 'rewrite' => true,
 'capability_type' => 'post',
 'has_archive' => true,
 'hierarchical' => false,
 'menu_position' => null,
 'supports' => array('title', 'editor', 'thumbnail', 'excerpt')
);

 register_post_type('halloween-products', $args);

}

Notice that you are wrapping each translatable term in the __() translation function. This allows
users to translate the terms into any language they want. You’ll see these translation functions used
throughout this plugin example.

Now you’ll create the Halloween Store settings page. The fi rst step is to add a Settings submenu item
for your settings page using the add_options_page() function:

// Action hook to add the post products menu item
add_action('admin_menu', 'halloween_store_menu');

//create the Halloween Masks sub-menu
function halloween_store_menu() {

 add_options_page(__('Halloween Store Settings Page',
 'halloween-plugin'), __('Halloween Store Settings',
 'halloween-plugin'), 'manage_options', 'halloween-store-settings',
 'halloween_store_settings_page');

}

As you can see, this function is used to create your submenu item. Your Halloween Store Settings
submenu item will be located at the bottom of the Settings menu in your Dashboard. You also set
this menu item to be viewable by an administrator only.

Now you need to build the actual settings page. As shown in the preceding code, the Halloween
Store Settings page triggers your custom halloween_store_settings_page() function.

//build the plugin settings page
function halloween_store_settings_page() {

 //load the plugin options array
 $hween_options_arr = get_option('halloween_options');

 //set the option array values to variables
 $hs_inventory = (! empty($hween_options_arr['show_inventory'])) ?
 $hween_options_arr['show_inventory'] : '';
 $hs_currency_sign = $hween_options_arr['currency_sign'];
 ?>
 <div class="wrap">
 <h2><?php _e('Halloween Store Options', 'halloween-plugin') ?></h2>

 <form method="post" action="options.php">

c08.indd 186c08.indd 186 12/6/12 1:19 AM12/6/12 1:19 AM

Creating a Plugin Example ❘ 187

 <?php settings_fields('halloween-settings-group'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row"><?php _e('Show Product Inventory',
 'halloween-plugin') ?></th>
 <td><input type="checkbox" name="halloween_options[show_inventory]"
 <?php echo checked($hs_inventory, 'on'); ?> /></td>
 </tr>

 <tr valign="top">
 <th scope="row"><?php _e('Currency Sign', 'halloween-plugin') ?></th>
 <td><input type="text" name="halloween_options[currency_sign]"
 value="<?php echo esc_attr($hs_currency_sign); ?>"
 size="1" maxlength="1" /></td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary"
 value="<?php _e('Save Changes', 'halloween-plugin'); ?>" />
 </p>

 </form>
 </div>
<?php
}

Your Halloween Store plugin has two options: whether to show product inventory and the currency
sign to use. First you load your plugin options array value. Next, set the two option values to
variables. You use a PHP ternary operator to set the default value for Inventory. You also load in the
current currency value into a variable for display. Next, you display your settings page form with
both option form fi elds listed. Notice that you are using the settings_fields() function to link
your settings form to your registered setting that you will defi ne in the code that follows. This is the
proper way to save your setting options in an array using the Settings API.

When the form is submitted, WordPress will use the Settings API to sanitize the form values and
save them in the database. To make this work, you need to register your settings fi eld and sanitiza-
tion functions:

// Action hook to register the plugin option settings
add_action('admin_init', 'halloween_store_register_settings');

function halloween_store_register_settings() {

 //register the array of settings
 register_setting('halloween-settings-group',
 'halloween_options', 'halloween_sanitize_options');

}

function halloween_sanitize_options($options) {

 $options['show_inventory'] = (! empty($options['show_inventory'])) ?
 sanitize_text_field($options['show_inventory']) : '';
 $options['currency_sign'] = (! empty($options['currency_sign'])) ?

c08.indd 187c08.indd 187 12/6/12 1:19 AM12/6/12 1:19 AM

188 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 sanitize_text_field($options['currency_sign']) : '';

 return $options;

}

Using the register_setting() function, you register the settings group, halloween-settings-
group, and the option name, halloween-options, to be used in your settings form. The hallow-
een_sanitize_options() function is used to sanitize the user input for each setting prior to saving
in WordPress. This is a very important security step to verify that the data being submitted is prop-
erly sanitized before being saved in the database.

Now that your plugin settings are saved, it’s time to register the Meta Box for saving Product
metadata:

//Action hook to register the Products meta box
add_action('add_meta_boxes', 'halloween_store_register_meta_box');

function halloween_store_register_meta_box() {

 // create our custom meta box
 add_meta_box('halloween-product-meta',
 __('Product Information','halloween-plugin'),
 'halloween_meta_box', 'halloween-products', 'side', 'default');

}

Using the add_meta_boxes action hook, you’ll call your custom function for registering the
Products meta box. The add_meta_box() function is used to do the actual registering. Now that the
meta box is registered, you need to build the meta box form:

//build product meta box
function halloween_meta_box($post) {

 // retrieve our custom meta box values
 $hween_sku = get_post_meta($post->ID, '_halloween_product_sku', true);
 $hween_price = get_post_meta($post->ID, '_halloween_product_price', true);
 $hween_weight = get_post_meta($post->ID, '_halloween_product_weight', true);
 $hween_color = get_post_meta($post->ID, '_halloween_product_color', true);
 $hween_inventory = get_post_meta($post->ID, '_halloween_product_inventory',
 true);

 //nonce field for security
 wp_nonce_field('meta-box-save', 'halloween-plugin');

 // display meta box form
 echo '<table>';
 echo '<tr>';
 echo '<td>' .__('Sku', 'halloween-plugin').':</td>
 <td><input type="text" name="halloween_product_sku"
 value="'.esc_attr($hween_sku).'" size="10"></td>';
 echo '</tr><tr>';
 echo '<td>' .__('Price', 'halloween-plugin').':</td>
 <td><input type="text" name="halloween_product_price"
 value="'.esc_attr($hween_price).'" size="5"></td>';
 echo '</tr><tr>';

c08.indd 188c08.indd 188 12/6/12 1:19 AM12/6/12 1:19 AM

Creating a Plugin Example ❘ 189

 echo '<td>' .__('Weight', 'halloween-plugin').':</td>
 <td><input type="text" name="halloween_product_weight"
 value="'.esc_attr($hween_weight).'" size="5"></td>';
 echo '</tr><tr>';
 echo '<td>' .__('Color', 'halloween-plugin').':</td>
 <td><input type="text" name="halloween_product_color"
 value="'.esc_attr($hween_color).'" size="5"></td>';
 echo '</tr><tr>';
 echo '<td>Inventory:</td>
 <td><select name="halloween_product_inventory"
 id="halloween_product_inventory">
 <option value="In Stock"'
 .selected($hween_inventory, 'In Stock', false). '>'
 .__('In Stock', 'halloween-plugin'). '</option>
 <option value="Backordered"'
 .selected($hween_inventory, 'Backordered', false). '>'
 .__('Backordered', 'halloween-plugin'). '</option>
 <option value="Out of Stock"'
 .selected($hween_inventory, 'Out of Stock', false). '>'
 .__('Out of Stock', 'halloween-plugin'). '</option>
 <option value="Discontinued"'
 .selected($hween_inventory, 'Discontinued', false). '>'
 .__('Discontinued', 'halloween-plugin'). '</option>
 </select></td>';
 echo '</tr>';

 //display the meta box shortcode legend section
 echo '<tr><td colspan="2"><hr></td></tr>';
 echo '<tr><td colspan="2">'
 .__('Shortcode Legend', 'halloween-plugin').'</td></tr>';
 echo '<tr><td>' .__('Sku', 'halloween-plugin') .':
 </td><td>[hs show=sku]</td></tr>';
 echo '<tr><td>' .__('Price', 'halloween-plugin').':
 </td><td>[hs show=price]</td></tr>';
 echo '<tr><td>' .__('Weight', 'halloween-plugin').':
 </td><td>[hs show=weight]</td></tr>';
 echo '<tr><td>' .__('Color', 'halloween-plugin').':
 </td><td>[hs show=color]</td></tr>';
 echo '<tr><td>' .__('Inventory', 'halloween-plugin').':
 </td><td>[hs show=inventory]</td></tr>';
 echo '</table>';
}

Your Halloween Store plugin saves fi ve different product values on
every product: SKU, price, weight, color, and inventory. As you can
see, the fi rst step is to load these fi ve custom fi eld values. Next, you
display the meta box form and fi ll in the current values if any exist.
Below the meta box form, you display a simple shortcode legend to
show the user what shortcode options are available for displaying the
product metadata. Once completed, your custom meta box will look
like Figure 8-7.

FIGURE 8-7: Post product

meta box

c08.indd 189c08.indd 189 12/6/12 1:19 AM12/6/12 1:19 AM

190 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Now that you’ve created your custom meta box, you need to save the data entered in the form, as
shown in the following code:

// Action hook to save the meta box data when the post is saved
add_action('save_post','halloween_store_save_meta_box');

//save meta box data
function halloween_store_save_meta_box($post_id) {

 //verify the post type is for Halloween Products and metadata has been posted
 if (get_post_type($post_id) == 'halloween-products'
 && isset($_POST['halloween_product_sku'])) {

 //if autosave skip saving data
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE)
 return;

 //check nonce for security
 check_admin_referer('meta-box-save', 'halloween-plugin');

 // save the meta box data as post metadata
 update_post_meta($post_id, '_halloween_product_sku',
 sanitize_text_field($_POST['halloween_product_sku']));
 update_post_meta($post_id, '_halloween_product_price',
 sanitize_text_field($_POST['halloween_product_price']));
 update_post_meta($post_id, '_halloween_product_weight',
 sanitize_text_field($_POST['halloween_product_weight']));
 update_post_meta($post_id, '_halloween_product_color',
 sanitize_text_field($_POST['halloween_product_color']));
 update_post_meta($post_id, '_halloween_product_inventory',
 sanitize_text_field($_POST['halloween_product_inventory']));

 }

}

First you need to verify that the post being saved is a halloween-products custom post type
entry. You also verify the $_POST['halloween_product_sku'] value is set before proceeding. The
only required fi eld is the product SKU, so if this fi eld is blank, the product data will not be saved.
After you have verifi ed that a SKU exists, you need to verify that the post is not an autosave. You
also need to verify the nonce for security using check_admin_referer(). After all checks have
passed, you save your custom product fi elds as product metadata for the product you are creating or
updating.

Next, you’re going to set up the plugin shortcode. This will allow you to easily display any or all
Product metadata in the Product content.

// Action hook to create the products shortcode
add_shortcode('hs', 'halloween_store_shortcode');

//create shortcode
function halloween_store_shortcode($atts, $content = null) {

c08.indd 190c08.indd 190 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 191

 global $post;

 extract(shortcode_atts(array(
 "show" => ''
), $atts));

 //load options array
 $hween_options_arr = get_option('halloween_options');

 if ($show == 'sku') {

 $hs_show = get_post_meta($post->ID, '_halloween_product_sku', true);

 }elseif ($show == 'price') {

 $hs_show = $hween_options_arr['currency_sign'].
 get_post_meta($post->ID, '_halloween_product_price', true);

 }elseif ($show == 'weight') {

 $hs_show = get_post_meta($post->ID,
 '_halloween_product_weight', true);

 }elseif ($show == 'color') {

 $hs_show = get_post_meta($post->ID,
 '_halloween_product_color', true);

 }elseif ($show == 'inventory') {

 $hs_show = get_post_meta($post->ID,
 '_halloween_product_inventory', true);

 }

 //return the shortcode value to display
 return $hs_show;

}

The fi rst thing you do is initialize the global variable $post. This will bring in the $post->ID value
for the post in which you are using the shortcode. Next, you extract the shortcode attributes that
you’ve defi ned, in this case show. Finally, you check what attribute value is being sent to the shortcode
to determine what value to show. Using the shortcode like [hs show=price] would display the
price of the product. If the price metadata is being displayed, you’ll need to retrieve the currency
sign option value that was set by the user.

Next up, you are going to create your products widget:

// Action hook to create plugin widget
add_action('widgets_init', 'halloween_store_register_widgets');

//register the widget

c08.indd 191c08.indd 191 12/6/12 1:20 AM12/6/12 1:20 AM

192 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

function halloween_store_register_widgets() {

 register_widget('hs_widget');

}

//hs_widget class
class hs_widget extends WP_Widget {

First you have to register your widget as hs_widget using the register_widget() function. Next,
you extend the Widget class as hs_widget. Now you need to create the four widget functions
needed to build your widget:

 //process our new widget
 function hs_widget() {

 $widget_ops = array(
 'classname' => 'hs-widget-class',
 'description' => __('Display Halloween Products',
 'halloween-plugin'));
 $this->WP_Widget('hs_widget', __('Products Widget',
 'halloween-plugin'), $widget_ops);

 }

The fi rst function you create is the hs_widget() function, also known as the constructor. Here, you
set the widget title, description, and class name for your custom widget:

 //build our widget settings form
 function form($instance) {

 $defaults = array(
 'title' => __('Products', 'halloween-plugin'),
 'number_products' => '3');

 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance['title'];
 $number_products = $instance['number_products'];
 ?>
 <p><?php _e('Title', 'halloween-plugin') ?>:
 <input class="widefat"
 name="<?php echo $this->get_field_name('title'); ?>"
 type="text" value="<?php echo esc_attr($title); ?>" /></p>
 <p><?php _e('Number of Products', 'halloween-plugin') ?>:
 <input name="
 <?php echo $this->get_field_name('number_products'); ?>"
 type="text" value="<?php echo esc_attr($number_products); ?>"
 size="2" maxlength="2" />
 </p>
 <?php
 }

The second function you defi ne is the form() function. This builds the form for saving your widget
settings. You are saving two settings in your widget: the widget title and the number of products to
display. First, you defi ne the setting defaults if no settings have been saved. Next, you load in the

c08.indd 192c08.indd 192 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 193

saved values for your two settings. Finally, you display both setting form fi elds with the setting
values if they exist.

 //save our widget settings
 function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance['title'] = sanitize_text_field($new_instance['title']);
 $instance['number_products'] = absint($new_instance['number_products']);

 return $instance;

 }

The next function you create is the update() function. This function saves your widget settings.
Notice how you utilize the sanitize_text_field()function to sanitize your widget title. You
also use the PHP absint() function to verify that the number of products value is a non-negative
integer.

 //display our widget
 function widget($args, $instance) {
 global $post;

 extract($args);

 echo $before_widget;
 $title = apply_filters('widget_title', $instance['title']);
 $number_products = $instance['number_products'];

 if (! empty($title)) { echo $before_title . esc_html($title)
 . $after_title; };

 //custom query to retrieve products
 $args = array(
 'post_type' => 'halloween-products',
 'posts_per_page' => absint($number_products)
);

 $dispProducts = new WP_Query();
 $dispProducts->query($args);

 while ($dispProducts->have_posts()) : $dispProducts->the_post();

 //load options array
 $hween_options_arr = get_option('halloween_options');

 //load custom meta values
 $hs_price = get_post_meta($post->ID,
 '_halloween_product_price', true);
 $hs_inventory = get_post_meta($post->ID,
 '_halloween_product_inventory', true);
 ?>
 <p>
 <a href="<?php the_permalink(); ?>"
 rel="bookmark"

c08.indd 193c08.indd 193 12/6/12 1:20 AM12/6/12 1:20 AM

194 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 title="<?php the_title_attribute(); ?> Product Information">
 <?php the_title(); ?>

 </p>
 <?php
 echo '<p>' .__('Price', 'halloween-plugin'). ': '
 .$hween_options_arr['currency_sign'] .$hs_price .'</p>';

 //check if Show Inventory option is enabled
 if ($hween_options_arr['show_inventory']) {

 //display the inventory metadata for this product
 echo '<p>' .__('Stock', 'halloween-plugin'). ': '
 .$hs_inventory .'</p>';

 }
 echo '<hr>';

 endwhile;

 wp_reset_postdata();

 echo $after_widget;

 }
}

The fi nal function defi ned is the widget() function. This function displays your widget on the public
side of your website. First you initialize the global $post variable and extract the $args for the
widget. Then you display the $before_widget variable. This variable can be set by theme and
plugin developers to display specifi ed content before and after the plugin. Next, you retrieve your
two setting values. If the $title value is not empty, you use it, but if it is, you’ll use the default title
you defi ned earlier.

To display the products in your widget, you are creating a custom Loop using WP_Query, as
discussed in Chapter 5. Remember that because this is not your main Loop, you’ll want to use
WP_Query to create your custom Loop instead of query_posts(). To defi ne your custom Loop, you
pass in two parameters: one for the post type and one for number of products to display. The fi rst
value (post_type=halloween-products) tells your custom Loop to only
return Halloween product entries. The second value, posts_per_page,
determines how many products to display. This number is pulled from the
widget options value set by the user.

Next, you load your option values and the custom metadata values you will
be displaying in your widget. Finally, you display your product values in the
widget. If the option Show Inventory is enabled, the inventory value will be
displayed. After successfully creating the Products widget, it should look
like Figure 8-8.

The fi nal step for your Halloween Store plugin is to create your unin-
stall.php fi le:

FIGURE 8-8: Products

widget

c08.indd 194c08.indd 194 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 195

<?php
//if uninstall/delete not called from WordPress exit
if(! defined('ABSPATH') && ! defined('WP_UNINSTALL_PLUGIN'))
 exit ();

// Delete options array from options table
delete_option('halloween_options');
?>

The fi rst thing you check is that ABSPATH and WP_UNINSTALL_PLUGIN constants exist. This means
they were called from WordPress and add a layer of security on the uninstaller. After you have
verifi ed that the request is valid, you delete your single option value from the database. You could
also defi ne other uninstall functionality here, if needed, such as removing every product metadata
value you saved in the database.

That’s it! You just successfully built an entire plugin that includes many of the features covered
in this chapter. This is a fairly basic plugin but should give you the examples and tools needed to
expand upon. Listing 8-5 shows the plugin source code in its entirety. To access this code online,
visit https://github.com/williamsba/HalloweenStore.

LISTING 8-5: Complete Plugin Source Code (halloween-store.zip)

<?php
/*
Plugin Name: Halloween Store
Plugin URI: http://webdevstudios.com/support/wordpress-plugins/
Description: Create a Halloween Store to display product information
Version: 1.0
Author: Brad Williams
Author URI: http://webdevstudios.com
License: GPLv2
*/

/* Copyright 2013 Brad Williams (email : brad@webdevstudios.com)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

// Call function when plugin is activated

continues

c08.indd 195c08.indd 195 12/6/12 1:20 AM12/6/12 1:20 AM

https://github.com/williamsba/HalloweenStore
http://webdevstudios.com/support/wordpress-plugins/
http://webdevstudios.com
mailto:brad@webdevstudios.com

196 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

register_activation_hook(__FILE__, 'halloween_store_install');

function halloween_store_install() {

 //setup default option values
 $hween_options_arr = array(
 'currency_sign' => '$'
);

 //save our default option values
 update_option('halloween_options', $hween_options_arr);

}

// Action hook to initialize the plugin
add_action('init', 'halloween_store_init');

//Initialize the Halloween Store
function halloween_store_init() {

 //register the products custom post type
 $labels = array(
 'name' => __('Products', 'halloween-plugin'),
 'singular_name' => __('Product', 'halloween-plugin'),
 'add_new' => __('Add New', 'halloween-plugin'),
 'add_new_item' => __('Add New Product', 'halloween-plugin'),
 'edit_item' => __('Edit Product', 'halloween-plugin'),
 'new_item' => __('New Product', 'halloween-plugin'),
 'all_items' => __('All Products', 'halloween-plugin'),
 'view_item' => __('View Product', 'halloween-plugin'),
 'search_items' => __('Search Products', 'halloween-plugin'),
 'not_found' => __('No products found', 'halloween-plugin'),
 'not_found_in_trash' => __('No products found in Trash', 'halloween-
plugin'),
 'menu_name' => __('Products', 'halloween-plugin')
);

 $args = array(
 'labels' => $labels,
 'public' => true,
 'publicly_queryable' => true,
 'show_ui' => true,
 'show_in_menu' => true,
 'query_var' => true,
 'rewrite' => true,
 'capability_type' => 'post',
 'has_archive' => true,
 'hierarchical' => false,
 'menu_position' => null,
 'supports' => array('title', 'editor', 'thumbnail', 'excerpt')

LISTING 8-5 (continued)

c08.indd 196c08.indd 196 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 197

);

 register_post_type('halloween-products', $args);

}

// Action hook to add the post products menu item
add_action('admin_menu', 'halloween_store_menu');

//create the Halloween Masks sub-menu
function halloween_store_menu() {

 add_options_page(__('Halloween Store Settings Page', 'halloween-plugin'),
 __('Halloween Store Settings', 'halloween-plugin'),
 'manage_options', 'halloween-store-settings',
 'halloween_store_settings_page');

}

//build the plugin settings page
function halloween_store_settings_page() {

 //load the plugin options array
 $hween_options_arr = get_option('halloween_options');

 //set the option array values to variables
 $hs_inventory = (! empty($hween_options_arr['show_inventory']))
 ? $hween_options_arr['show_inventory'] : '';
 $hs_currency_sign = $hween_options_arr['currency_sign'];
 ?>
 <div class="wrap">
 <h2><?php _e('Halloween Store Options', 'halloween-plugin') ?></h2>

 <form method="post" action="options.php">
 <?php settings_fields('halloween-settings-group'); ?>
 <table class="form-table">
 <tr valign="top">
 <th scope="row"><?php _e('Show Product Inventory',
 'halloween-plugin') ?></th>
 <td><input type="checkbox" name="halloween_options[show_inventory]"
 <?php echo checked($hs_inventory, 'on'); ?> /></td>
 </tr>

 <tr valign="top">
 <th scope="row"><?php _e('Currency Sign', 'halloween-plugin') ?></th>
 <td><input type="text" name="halloween_options[currency_sign]"
 value="<?php echo esc_attr($hs_currency_sign); ?>"
 size="1" maxlength="1" /></td>
 </tr>
 </table>

 <p class="submit">
 <input type="submit" class="button-primary"
 value="<?php _e('Save Changes', 'halloween-plugin'); ?>" />

continues

c08.indd 197c08.indd 197 12/6/12 1:20 AM12/6/12 1:20 AM

198 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 </p>

 </form>
 </div>
<?php
}

// Action hook to register the plugin option settings
add_action('admin_init', 'halloween_store_register_settings');

function halloween_store_register_settings() {

 //register the array of settings
 register_setting('halloween-settings-group',
 'halloween_options', 'halloween_sanitize_options');

}

function halloween_sanitize_options($options) {

 $options['show_inventory'] = (! empty($options['show_inventory']
)) ? sanitize_text_field($options['show_inventory']) : '';
 $options['currency_sign'] = (! empty($options['currency_sign']
)) ? sanitize_text_field($options['currency_sign']) : '';

 return $options;

}

//Action hook to register the Products meta box
add_action('add_meta_boxes', 'halloween_store_register_meta_box');

function halloween_store_register_meta_box() {

 // create our custom meta box
 add_meta_box('halloween-product-meta',
 __('Product Information','halloween-plugin'),
 'halloween_meta_box', 'halloween-products', 'side',
 'default');

}

//build product meta box
function halloween_meta_box($post) {

 // retrieve our custom meta box values
 $hween_sku = get_post_meta($post->ID, '_halloween_product_sku', true);
 $hween_price = get_post_meta($post->ID, '_halloween_product_price', true);
 $hween_weight = get_post_meta($post->ID, '_halloween_product_weight', true);
 $hween_color = get_post_meta($post->ID, '_halloween_product_color', true);
 $hween_inventory = get_post_meta($post->ID,

LISTING 8-5 (continued)

c08.indd 198c08.indd 198 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 199

 '_halloween_product_inventory', true);

 //nonce field for security
 wp_nonce_field('meta-box-save', 'halloween-plugin');

 // display meta box form
 echo '<table>';
 echo '<tr>';
 echo '<td>' .__('Sku', 'halloween-plugin').':</td><td>
 <input type="text" name="halloween_product_sku"
 value="'.esc_attr($hween_sku).'" size="10"></td>';
 echo '</tr><tr>';
 echo '<td>' .__('Price', 'halloween-plugin').':</td><td>
 <input type="text" name="halloween_product_price"
 value="'.esc_attr($hween_price).'" size="5"></td>';
 echo '</tr><tr>';
 echo '<td>' .__('Weight', 'halloween-plugin').':</td><td>
 <input type="text" name="halloween_product_weight"
 value="'.esc_attr($hween_weight).'" size="5"></td>';
 echo '</tr><tr>';
 echo '<td>' .__('Color', 'halloween-plugin').':</td><td>
 <input type="text" name="halloween_product_color"
 value="'.esc_attr($hween_color).'" size="5"></td>';
 echo '</tr><tr>';
 echo '<td>Inventory:</td><td>
 <select name="halloween_product_inventory"
 id="halloween_product_inventory">
 <option value="In Stock"'
 .selected($hween_inventory, 'In Stock', false). '>' .__('In
Stock', 'halloween-plugin')
 . '</option>
 <option value="Backordered"'
 .selected($hween_inventory, 'Backordered', false). '>' .__(
'Backordered', 'halloween-plugin')
 . '</option>
 <option value="Out of Stock"'
 .selected($hween_inventory, 'Out of Stock', false)
 . '>' .__('Out of Stock', 'halloween-plugin'). '</option>
 <option value="Discontinued"'
 .selected($hween_inventory, 'Discontinued', false)
 . '>' .__('Discontinued', 'halloween-plugin'). '</option>
 </select></td>';
 echo '</tr>';

 //display the meta box shortcode legend section
 echo '<tr><td colspan="2"><hr></td></tr>';
 echo '<tr><td colspan="2">' .__('Shortcode Legend',
 'halloween-plugin').'</td></tr>';
 echo '<tr><td>' .__('Sku', 'halloween-plugin') .':</td><td>
 [hs show=sku]</td></tr>';
 echo '<tr><td>' .__('Price', 'halloween-plugin').':</td><td>
 [hs show=price]</td></tr>';
 echo '<tr><td>' .__('Weight', 'halloween-plugin').':</td><td>
 [hs show=weight]</td></tr>';
 echo '<tr><td>' .__('Color', 'halloween-plugin').':</td><td>

continues

c08.indd 199c08.indd 199 12/6/12 1:20 AM12/6/12 1:20 AM

200 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 [hs show=color]</td></tr>';
 echo '<tr><td>' .__('Inventory', 'halloween-plugin').':</td><td>
 [hs show=inventory]</td></tr>';
 echo '</table>';
}

// Action hook to save the meta box data when the post is saved
add_action('save_post','halloween_store_save_meta_box');

//save meta box data
function halloween_store_save_meta_box($post_id) {

 //verify the post type is for Halloween Products and metadata has been posted
 if (get_post_type($post_id) == 'halloween-products'
 && isset($_POST['halloween_product_sku'])) {

 //if autosave skip saving data
 if (defined('DOING_AUTOSAVE') && DOING_AUTOSAVE)
 return;

 //check nonce for security
 check_admin_referer('meta-box-save', 'halloween-plugin');

 // save the meta box data as post metadata
 update_post_meta($post_id, '_halloween_product_sku',
 sanitize_text_field($_POST['halloween_product_sku']));
 update_post_meta($post_id, '_halloween_product_price',
 sanitize_text_field($_POST['halloween_product_price']));
 update_post_meta($post_id, '_halloween_product_weight',
 sanitize_text_field($_POST['halloween_product_weight']));
 update_post_meta($post_id, '_halloween_product_color',
 sanitize_text_field($_POST['halloween_product_color']));
 update_post_meta($post_id, '_halloween_product_inventory',
 sanitize_text_field($_POST['halloween_product_inventory']));

 }

}

// Action hook to create the products shortcode
add_shortcode('hs', 'halloween_store_shortcode');

//create shortcode
function halloween_store_shortcode($atts, $content = null) {
 global $post;

 extract(shortcode_atts(array(
 "show" => ''
), $atts));

 //load options array

LISTING 8-5 (continued)

c08.indd 200c08.indd 200 12/6/12 1:20 AM12/6/12 1:20 AM

Creating a Plugin Example ❘ 201

 $hween_options_arr = get_option('halloween_options');

 if ($show == 'sku') {

 $hs_show = get_post_meta($post->ID, '_halloween_product_sku', true);

 }elseif ($show == 'price') {

 $hs_show = $hween_options_arr['currency_sign']. get_post_meta($post->ID,
 '_halloween_product_price', true);

 }elseif ($show == 'weight') {

 $hs_show = get_post_meta($post->ID, '_halloween_product_weight', true);

 }elseif ($show == 'color') {

 $hs_show = get_post_meta($post->ID, '_halloween_product_color', true);

 }elseif ($show == 'inventory') {

 $hs_show = get_post_meta($post->ID,
 '_halloween_product_inventory', true);

 }

 //return the shortcode value to display
 return $hs_show;
}

// Action hook to create plugin widget
add_action('widgets_init', 'halloween_store_register_widgets');

//register the widget
function halloween_store_register_widgets() {

 register_widget('hs_widget');

}

//hs_widget class
class hs_widget extends WP_Widget {

 //process our new widget
 function hs_widget() {

 $widget_ops = array(
 'classname' => 'hs-widget-class',
 'description' => __('Display Halloween Products','halloween-
plugin'));
 $this->WP_Widget('hs_widget', __('Products Widget','halloween-plugin'),
 $widget_ops);

 }

 //build our widget settings form

continues

c08.indd 201c08.indd 201 12/6/12 1:20 AM12/6/12 1:20 AM

202 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

 function form($instance) {

 $defaults = array(
 'title' => __('Products', 'halloween-plugin'),
 'number_products' => '3');

 $instance = wp_parse_args((array) $instance, $defaults);
 $title = $instance['title'];
 $number_products = $instance['number_products'];
 ?>
 <p><?php _e('Title', 'halloween-plugin') ?>:
 <input class="widefat" name="<?php echo $this->get_field_name(
'title'); ?>"
 type="text" value="<?php echo esc_attr($title); ?>" /></p>
 <p><?php _e('Number of Products', 'halloween-plugin') ?>:
 <input name="<?php echo $this->get_field_name(
'number_products'); ?>"
 type="text" value="<?php echo esc_attr($number_products); ?>"
 size="2" maxlength="2" />
 </p>
 <?php
 }

 //save our widget settings
 function update($new_instance, $old_instance) {

 $instance = $old_instance;
 $instance['title'] =
 sanitize_text_field($new_instance['title']);
 $instance['number_products'] =
 absint($new_instance['number_products']);

 return $instance;

 }

 //display our widget
 function widget($args, $instance) {
 global $post;

 extract($args);

 echo $before_widget;
 $title = apply_filters('widget_title', $instance['title']);
 $number_products = $instance['number_products'];

 if (! empty($title)) { echo $before_title . esc_html($title)
 . $after_title; };

 //custom query to retrieve products
 $args = array(
 'post_type' => 'halloween-products',

LISTING 8-5 (continued)

c08.indd 202c08.indd 202 12/6/12 1:20 AM12/6/12 1:20 AM

Publishing to the Plugin Directory ❘ 203

 'posts_per_page' => absint($number_products)
);

 $dispProducts = new WP_Query();
 $dispProducts->query($args);

 while ($dispProducts->have_posts()) : $dispProducts->the_post();

 //load options array
 $hween_options_arr = get_option('halloween_options');

 //load custom meta values
 $hs_price = get_post_meta($post->ID,
 '_halloween_product_price', true);
 $hs_inventory = get_post_meta($post->ID,
 '_halloween_product_inventory', true);
 ?>
 <p>
 <a href="<?php the_permalink(); ?>" rel="bookmark"
 title="<?php the_title_attribute(); ?> Product Information">
 <?php the_title(); ?>

 </p>
 <?php
 echo '<p>' .__('Price', 'halloween-plugin'). ': '
 .$hween_options_arr['currency_sign'] .$hs_price .'</p>';

 //check if Show Inventory option is enabled
 if ($hween_options_arr['show_inventory']) {

 //display the inventory metadata for this product
 echo '<p>' .__('Stock', 'halloween-plugin')
 . ': ' .$hs_inventory .'</p>';

 }
 echo '<hr>';

 endwhile;

 wp_reset_postdata();

 echo $after_widget;

 }

}

PUBLISHING TO THE PLUGIN DIRECTORY

Now it’s time to release your plugin to the world! Releasing your plugin on WordPress.org is not
a requirement, but it is the best way to get your plugin publicized and have other WordPress users
download and install it. Remember that the Plugin Directory on WordPress.org is directly hooked
to every installation of WordPress, so if your plugin exists in the directory then anyone running
WordPress can easily download and install it.

c08.indd 203c08.indd 203 12/6/12 1:20 AM12/6/12 1:20 AM

http://WordPress.org
http://WordPress.org

204 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Restrictions

A few restrictions exist to submitting your plugin to the Plugin Directory:

 ➤ Plugin must be compatible with GPLv2 or any later version.

 ➤ Plugin must not do anything illegal or morally offensive.

 ➤ Must use the Subversion (SVN) repository to host your plugin.

 ➤ Plugin must not embed external links on the user’s site (such as a “powered by” link) with-
out asking the plugin user’s permission.

Make sure to follow these guidelines or your plugin will be removed from the Plugin Directory.

Submitting Your Plugin

The fi rst step is to create an account on WordPress.org if you don’t already have one. To register a
new account, visit the registration page at http://wordpress.org/support/register.php. This
WordPress.org account is used in the Plugin Directory as well as the support forums.

After you have registered your account and signed in, it’s time to submit your plugin for inclusion
in the Plugin Directory on WordPress.org. To submit your plugin, visit the Add Your Plugin page at
http://wordpress.org/extend/plugins/add/.

The fi rst required fi eld is the Plugin Name. The plugin name should be the exact name you want to
use for your plugin. Keep in mind that the plugin name will be used as the URL in the directory. For
example, if you submit a plugin named WP Brad, the URL to your plugin in the Plugin Directory
will be http://wordpress.org/extend/plugins/wp-brad/. As you can see, the name you insert
here is very important and cannot be changed.

The second required fi eld is the Plugin Description. This fi eld should contain a detailed description
about your plugin. Remember that the description is really the only information used to decide
whether or not to allow your plugin in the directory. Clearly state the plugin functionality, the
purpose of the plugin, and installation instructions for the plugin.

The fi nal fi eld is the Plugin URL. This is not a required fi eld, but it’s highly recommended that you
include a download link to your plugin. This enables the reviewer of your plugin to download and
look at your plugin if needed. Again this is not a required fi eld but you are strongly encouraged to
fi ll it in.

After you have fi lled out all of the information, click the Send Post button to submit your plugin
request. The Plugin Directory states, “Within some vaguely defi ned amount of time, someone will
approve your request.” This doesn’t really tell you much, but most plugins are approved within a
day or so. The fact that your plugin has been approved does not mean you are done. The next step is
to upload your plugin to the Subversion Repository that has been created for it.

Creating a readme.txt File

One fi le that is required to submit your plugin to the Plugin Directory is readme.txt. This fi le is
used to fi ll in all of the plugin information on the Plugin detail page in the Directory. WordPress

c08.indd 204c08.indd 204 12/6/12 1:20 AM12/6/12 1:20 AM

http://wordpress.org/support/register.php
http://wordpress.org/extend/plugins/add/
http://wordpress.org/extend/plugins/wp-brad/
http://WordPress.org
http://WordPress.org
http://WordPress.org

Publishing to the Plugin Directory ❘ 205

has developed the readme fi le standard, which details exactly how your readme.txt fi le should be
defi ned. Here’s an example readme.txt fi le:

=== Plugin Name ===
Contributors: williamsba1, messenlehner, ericlewis, jtsternberg
Donate link:
http://example.com/donate
Tags: admin, post, images, page, widget
Requires at least: 3.0
Tested up to: 3.5
Stable tag: 1.1.0.0
License: GPLv2

Short description of the plugin with 150 chars max. No markup here.

== Description ==

This is the long description. No limit, and you can use Markdown

Additional plugin features

* Feature 1
* Feature 2
* Feature 3

For support visit the [Support Forum](http://example.com/forum/ " Support Forum")

== Installation ==

1. Upload 'plugin-directory' to the '/wp-content/plugins/' directory
2. Activate the plugin through the 'Plugins' SubPanel in WordPress
3. Place '<?php gmp_custom_function(); ?>' in your theme templates

== Frequently Asked Questions ==

= A question that someone might have =

An answer to that question.

= Does this plugin work with WordPress Multisite? =

Absolutely! This plugin has been tested and
verified to work on the most current version of WordPress Multisite

== Screenshots ==

1. Screenshot of plugin settings page
2. Screenshot of plugin in action

== Changelog ==

= 1.1 =
* New feature details
* Bug fix details

= 1.0 =

c08.indd 205c08.indd 205 12/6/12 1:20 AM12/6/12 1:20 AM

http://example.com/donate
http://example.com/forum/

206 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

* First official release

== Upgrade Notice ==

= 1.1 =
* Security bug fixed

For an online readme.txt example, visit the Readme Standard at http://wordpress.org/extend/
plugins/about/readme.txt.

WordPress.org also features a readme.txt validator so you can verify you have a properly formatted
readme.txt fi le before submitting to the Subversion directory. You can access the validator at
http://wordpress.org/extend/plugins/about/validator/. Let’s break down the individual
readme.txt sections:

=== Plugin Name ===
Contributors: williamsba1, messenlehner, ericlewis, jtsternberg
Donate link: http://example.com/donate
Tags: admin, post, images, page, widget
Requires at least: 3.0
Tested up to: 3.5
Stable tag: 1.1.0.0
License: GPLv2

Short description of the plugin with 150 chars max. No markup here.

The Plugin Name section is one of the most important parts of your readme.txt fi le. The fi rst line
lists the contributors to the plugin. This is a comma-separated list of WordPress.org usernames
that helped contribute to the plugin. The donate link should be a URL to either a donate link or a
web page that explains how users can donate to the plugin author. This is a great place for a PayPal
donation link. Tags are a comma-separated list of tags describing your plugin.

The “Requires at least” fi eld is the minimal version of WordPress required to run the plugin. If
your plugin won’t run on anything prior to 3.0, then 3.0 would be the “Requires at least” value.
Likewise, “Tested up to” is the latest version the plugin has been tested on. This will typically be
the latest stable version of WordPress. The Stable tag is also a very important fi eld and should be the
current version of the plugin. This value should always match the version number listed in the plugin
header. Last is a short description of the plugin, which should be no more than 150 characters and
cannot contain any markup.

== Description ==

This is the long description. No limit, and you can use Markdown

Additional plugin features

* Feature 1
* Feature 2
* Feature 3

For support visit the [Support Forum](http://example.com/forum/ " Support Forum")

c08.indd 206c08.indd 206 12/6/12 1:20 AM12/6/12 1:20 AM

http://wordpress.org/extend/plugins/about/readme.txt
http://wordpress.org/extend/plugins/about/readme.txt
http://wordpress.org/extend/plugins/about/validator/
http://example.com/donate
http://example.com/forum/
http://WordPress.org
http://WordPress.org

Publishing to the Plugin Directory ❘ 207

The Description section features a detailed description of your plugin. This is the default information
displayed on the plugin detail page in the Plugin Directory. There is no limit to the length of the
description. You can also use unordered lists, shown in the preceding example, and ordered lists in
your description. Links can also be inserted.

== Installation ==

1. Upload 'plugin-directory' to the '/wp-content/plugins/' directory
2. Activate the plugin through the 'Plugins' SubPanel in WordPress
3. Place '<?php prowp_custom_function(); ?>' in your theme templates

The Installation section details the steps involved to install a plugin. If your plugin has very specifi c
installation requirements, make sure they are listed here in detail. It’s also a good idea to list the
function name and shortcode that can be used with the plugin.

== Frequently Asked Questions ==

= A question that someone might have =

An answer to that question.

= Does this plugin work with WordPress Multisite? =

Absolutely! This plugin has been tested and
verified to work on the most current version of WordPress Multisite

The FAQ section is the perfect place to list frequently asked questions, of course! This helps answer
commonly asked questions and can eliminate many support requests. You can list multiple questions
with answers, as this example shows:

== Screenshots ==

1. Screenshot of plugin settings page
2. Screenshot of plugin in action

The Screenshots section is used to add individual screenshots of your plugin to the plugin detail
page. This is actually a two-step process. The fi rst step is to list out each screenshot description in
an ordered list. The next step is to place image fi les in your trunk directory (which is discussed in
more detail next). These images fi le names must match the listing number. For instance, the screen-
shot of your settings page should be named screenshot-1.png. The screenshot of your plugin in
action should be named screenshot-2.png. The fi le types accepted are png, jpg, jpeg, and gif.

== Changelog ==

= 1.1 =
* New feature details
* Bug fix details

= 1.0 =
* First official release

The next section is the Changelog. This section is important for listing out what each plugin version
release has added or fi xed. This is a very helpful section for anyone looking to upgrade to the latest
version. It’s always nice to know exactly what is being added and fi xed to determine how critical the

c08.indd 207c08.indd 207 12/6/12 1:20 AM12/6/12 1:20 AM

208 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

plugin update is. A new item should be added for each version you release to the Plugin Directory,
regardless of how minor that update may be.

== Upgrade Notice ==

= 1.1 =
* Security bug fixed

The fi nal section is the Upgrade Notice section. This section allows you to send specifi c upgrade
notice messages to the WordPress user. These messages are shown on the Dashboard ➪ Updates
Subpanel when a new version of your plugin is released.

The readme.txt fi le can also accept arbitrary sections in the same format as the rest. This is useful
for more complicated plugins that need to provide additional information. Arbitrary sections will be
displayed below the built-in sections described previously.

Setting Up SVN

The Plugin Directory uses Subversion (SVN) for handling plugins. To publish your plugin to the
directory, you’ll need to set up and confi gure an SVN client. In this example, you are going to use
TortoiseSVN for Windows. TortoiseSVN is a free GUI client interface for SVN. For a list of
additional SVN clients for different platforms visit http://subversion.apache.org/.

First you’ll need to download the appropriate installer at http://tortoisesvn.net/downloads
.html. After installing TortoiseSVN, you’ll need to reboot your computer. The next step is to
create a new directory on your computer to store your plugin fi les. It is recommended that you make
a folder to store all of your plugins in, such as c:\projects\wordpress-plugins. This makes it
much easier going forward if you create and release multiple plugins to WordPress.org.

Next, navigate to your new wordpress-plugins
directory and create a new directory for your plugin.
Right-click this new folder to pull up a context
menu. You’ll notice the new TortoiseSVN options
listed: SVN Checkout and ToirtoiseSVN. Select
SVN Checkout and a dialog box appears, as
shown in Figure 8-9.

The URL of the repository was provided to you
in the e-mail you received when your plugin was
approved. This URL should be the same as the
plugin URL so in this example the URL would
be http://plugins.svn.wordpress.org
/wp-brad. The Checkout directory is the local
folder in which to store your plugin. In this
case, you will use the new folder you created at
c:\projects\wordpress-plugins\wp-brad.
Make sure Checkout Depth is set to Fully Recursive. Also verify that the Revision is set to HEAD
Revision. Finally, click OK. TortoiseSVN will connect to the SVN Repository for your plugin and,
if all goes well, will create three new directories in your folder called branches, tags, and trunk.
These three folders each serve a specifi c purpose for SVN:

FIGURE 8-9: SVN Checkout dialog box

c08.indd 208c08.indd 208 12/6/12 1:20 AM12/6/12 1:20 AM

http://subversion.apache.org/
http://tortoisesvn.net/downloads.html
http://tortoisesvn.net/downloads.html
http://plugins.svn.wordpress.org/wp-brad
http://plugins.svn.wordpress.org/wp-brad
http://WordPress.org

Publishing to the Plugin Directory ❘ 209

 1. Branches — Every time a new major version is released, it gets a branch. This allows for bug
fi xes without releasing new functionality from trunk.

 2. Tags — Every time a new version is released, you’ll make a new tag for it.

 3. Trunk — Main development area. The next major release of code lives here.

Now that you’ve connected to your plugin’s SVN Repository, you need to move your plugin fi les to
the trunk directory. Remember to also place your readme.txt fi le and any screenshots, includes,
and so on in the trunk directory for your plugin. Remember that you’re just staging the plugin
fi les to publish to the plugin directory. Publishing the fi les to WordPress.org is covered in the next
section.

Once you’ve verifi ed all of the plugin fi les are in trunk, you are ready to publish your plugin to the
Plugin Directory!

Publishing to the Plugin Directory

Publishing your plugin to the Plugin Directory is a two-step process. First you need to SVN Commit
the trunk folder to your SVN Repository. Second, you need to tag your plugin release. Once both
steps have been completed, your new plugin will appear in the Plugin Directory within about 15
minutes.

To commit your plugin trunk, simply right-click the trunk folder and select SVN Commit. You’ll
be presented with a dialog box to enter a log message and to select which fi les to commit to the
trunk. Fill in a brief log message, such as “Adding WP-Brad 1.1,” and select all of the fi les you want
to commit. TortoiseSVN will automatically select all fi les that have changed so you probably won’t
need to change this. Next, click OK and you will be prompted to enter a username and password.
This is the username and password you created on WordPress.org.

Next, you need to tag your plugin version. To tag your plugin version, simply right-click the trunk
directory and select TortoiseSVN ➪ Branch/tag from the context menu. In the dialog box that
appears, fi ll in the path to your tag directory. Using this example, the URL would be http://
plugins.svn.wordpress.org/wp-brad/tags/1.1.0.0/. This tag version should match the stable
tag in your plugin’s readme.txt fi le — in your case, version 1.1.0.0. Also type in a log message,
such as “tagging version 1.1.0.0” and verify that “HEAD revision in the repository” is selected for
the Create Copy option. Click OK and your plugin will create a new directory in your tags folder
for version 1.1.0.0 with the appropriate plugin fi les.

That’s it! If everything worked successfully, your plugin should appear in the Plugin Directory
within about 15 minutes. Once your plugin is successfully published you’ll want to verify that all
of the information is correct. One way to verify that your plugin was published successfully is to visit
the Subversion URL, which for this example would be http://plugins.svn.wordpress.org/wp-
brad/. Here you can ensure the trunk and tag directories were uploaded successfully. After
15 minutes, you can also verify your plugin by visiting the offi cial Plugin Directory page at
http://www.wordpress.org/extend/plugins/wp-brad. If you need to make any changes to
your readme.txt fi le, simply edit it locally in your trunk folder, right-click the fi le, and click SVN
Commit.

c08.indd 209c08.indd 209 12/6/12 1:20 AM12/6/12 1:20 AM

http://plugins.svn.wordpress.org/wp-brad/
http://plugins.svn.wordpress.org/wp-brad/
http://www.wordpress.org/extend/plugins/wp-brad
http://plugins.svn.wordpress.org/wp-brad/tags/1.1.0.0/
http://plugins.svn.wordpress.org/wp-brad/tags/1.1.0.0/
http://WordPress.org
http://WordPress.org

210 ❘ CHAPTER 8 PLUGIN DEVELOPMENT

Releasing a New Version

A great feature of WordPress plugins is that you can easily release updates for your plugins in the
Plugin Directory. When a new plugin version is released, a notice is displayed on any WordPress site
that currently has that plugin uploaded to its server, whether or not it is activated. The user can use
the automatic upgrade process to easily upgrade the plugin to the latest version. This is especially
important if there are security patches in your plugin to help keep WordPress secure.

To release a new plugin version, make sure you copy the updated plugin fi les to the /trunk
directory you set up earlier. This folder should contain all fi les for the updated plugin version. Once
you have verifi ed that all of the updates plugin fi les exist, simply right-click the trunk directory
and select SVN Commit. Remember to type in a brief message such as “Committing version 1.2.”
TortoiseSVN should have already selected all of the fi les that have changed, but if not, select all of
the fi les you want to publish and click OK.

The fi nal step is to tag your new version. To tag your new release, right-click the trunk directory
and select TortoiseSVN ➪ Branch/tag. For this example, the URL would be http://plugins.svn.
wordpress.org/wp-brad/tags/1.2.0.0/. Remember to write a brief log entry such as “Tagging
version 1.2” and click OK. That’s it! Your new plugin version will be published in the Plugin
Directory within 15 minutes. After the new version has been released, your plugin will appear at the
top of the Recently Updated Plugins list on WordPress.org.

The WordPress Plugin Directory is a great source for inspiration and reference when building cus-
tom plugins. Don’t be scared to look at another plugin source code for reference. Find a plugin that
functions similarly to what you want and see how the plugin author structured the code or used
hooks to interpose his or her plugin ideas in the WordPress core processing.

SUMMARY

In this chapter you learned WordPress plugin packaging including the required plugin header,
including a WordPress compatible software license with your plugin, and activating and deactivating
functions. You also covered very important data validation and sanitization for plugin security. The
chapter also covered powerful hooks, plugin setting options, and multiple ways to integrate your
plugins into WordPress.

Plugins are only half of the WordPress extensibility story, giving you the power to add custom
functions and event-driving processing to your site. If you want to change the look and feel of your
site, change the way in which WordPress displays posts, or provide slots for those widgets you
created, you’ll want to extend WordPress through theme development which is the focus of chapter 9.

c08.indd 210c08.indd 210 12/6/12 1:20 AM12/6/12 1:20 AM

http://plugins.svn.wordpress.org/wp-brad/tags/1.2.0.0/
http://plugins.svn.wordpress.org/wp-brad/tags/1.2.0.0/
http://WordPress.org

Theme Development

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the various fi les and templates that constitute a

theme

 ➤ Modifying an existing theme to meet your own needs

 ➤ Identify the diff erent reasons to use a project theme or a child theme

 ➤ Creating a new theme based on the Twenty Eleven theme

Content is king, right? That is certainly true. Nothing is going to drive visitors to your site,
and keep them coming back, except for your content. Even if you have the best content on
the Internet for your topic, you have to present it to the reader, the browser, and to the search
engines so that your content can be consumed.

That’s where themes come in. Themes control the presentation layer of your site, including
both the user experience and how it is offered to the consumer. It also controls the logic that
determines which type of page and, therefore, which type of loop is to be used.

This chapter reviews how to install a theme on your website and then takes you through the
various aspects of a theme and how they apply to the presentation of your content. You will
also review different strategies for creating your theme, whether specifi cally for a project,
or as an adaptation of a theme framework. By the end of this chapter, you will have an
understanding of theme functionality and a solid foundation on which to build your own
custom project or child themes from scratch for use in your own projects.

WHY USE A THEME?

Your website theme is essentially the face of your website. It’s what makes the fi rst impression
on your visitor. Even though surely none of us is shallow enough to judge a book simply by
its cover, if your website has valuable content but your theme makes the content hard to read,

9

c09.indd 211c09.indd 211 12/6/12 1:20 AM12/6/12 1:20 AM

212 ❘ CHAPTER 9 THEME DEVELOPMENT

hard to fi nd, or generally inaccessible in any way, or your site is slow to load, not to mention
downright ugly, you have probably lost that visitor. You may never have had that visitor to lose.

The theme accomplishes many things for your website. Generally, people think of the theme as the
appearance of your site. It is the look and feel that gives your website that certain style or fl air. It is
the x-factor that gives your site a personality and makes your site stand out from the crowd. Your
theme is all that; a picture really is worth a thousand words.

But this is simply the graphical aspect of your site; your theme is so much more than the cohesive
marketing and branding facade. Your theme encompasses the entire user experience and more. It
controls what content gets rendered, including any error conditions. Your theme converts your content
and look and feel into the raw HTML that is delivered to the browser through its various templates.

In general, that’s what this chapter is about: using your theme to structure and control the content
delivery and the overall personality of your website. Your theme also has other functions, including
user experience and search engine optimization, which are addressed in later chapters.

INSTALLING A THEME

Starting back in 2010, WordPress began shipping a new default theme each year. The Twenty Ten
theme, released in — you guessed it, 2010 — was the fi rst to replace the venerable Kubrick theme
that had been around since 2005. Last year, Automattic released the Twenty Eleven theme as the
new default, and the new Twenty Twelve theme is expected to release with WordPress 3.5. These
default themes are all pretty solid themes to use for your site, but they are the defaults. That means
you see them on many sites across the web. Being unique, or custom, may or may not be important
to you or your goals, but for the sake of this chapter, pretend it is and you don’t want to use a stock,
out-of-the box theme.

How do you make WordPress use a new theme? First, you either have to fi nd one you like or make
one. Countless WordPress theme resources are available, and they all vary in quality. It is best to try
some out and see how they work with your content and if they match the personality and branding
you want your site to convey.

You have two simple ways to activate a new theme on your website. There is the traditional
FTP installation, and as of WordPress 2.8 there is a new integrated theme browser and installer.
The Theme Browser is limited in that it allows you to install themes only from the sanctioned
WordPress Theme Directory on WordPress.org. This is not inherently bad because plenty of solid,
good-looking themes are in the Theme Directory and they are all GPL licensed and free (two of the
requirements for being listed in the Directory). However, the Directory is a limited market; heaps of
other sites offer valuable WordPress themes, still of varying quality, both for free and for premiums.
In order to install these non-Directory themes, you will have to use the FTP method.

FTP Installation

File Transfer Protocol, or FTP, is the old standby for transferring fi les from your local workstation
to the server. If your host supports it, you should use a secure form of transfer, such as SFTP or
SCP, to move the fi les, but the concepts here are similar.

c09.indd 212c09.indd 212 12/6/12 1:21 AM12/6/12 1:21 AM

http://WordPress.org

What Is a Theme? ❘ 213

Download the theme package that you would like to try to your local computer and unzip it to a
local directory. If you have shell access on your server, you can unzip on the server to save in transfer
time. Using your FTP client, connect to your web server. FTP or copy the fi les into your themes
directory of your site. Your themes folder is located in /example.com/wp-content/themes/.

Once your theme fi les are on the server, log in to your site’s WordPress Control Panel. Select
Appearance, select your theme to preview it, and then activate it. Your website is now using the
new theme.

Theme Installer

WordPress 2.8 introduced a new Theme Installer. Currently this is offered as new tab on your
Themes Control Panel. The Manage Themes tab reveals which themes are currently available to
your WordPress installation.

The second tab, Install Themes, allows the site administrator (or anyone else with proper
permissions) to search and fi lter the online WordPress Theme Directory for existing published
themes. All themes in the Directory are subject to certain conditions in order to be listed; most
notably, they must be licensed to be GPL-compatible.

This new Theme Installer is pretty slick. You simply work the fi lters and search terms to browse the
Directory. Browse the thumbnail screenshots until you fi nd one you like. Then you can either click
Install Now to make it available to your current WordPress installation. Or you can preview the
theme in a larger format with a variety of HTML elements displayed for you to examine the CSS
styling. Finally, you can read the theme details and user star ratings by clicking the Details link.

On a development system running Microsoft Windows 7 and WAMP, this just works, which is a
little disconcerting. It is a permissions issue in your Webroot. Although this raises some concerns
about what else could so easily be installed on the site, in this case, it is just a development machine,
and the convenience of being able to test drive new themes outweighs the concerns.

Trying the Theme Installer on a production server for a WordPress site running on Ubuntu Linux
may yield different results. After selecting an appropriate obnoxious theme to try out, the Theme
Installer asks for FTP credentials to put the fi les on the server, in this case because the fi le security
permissions on the production server are properly set for production and to not allow this sort
of thing. Again, there is some concern about the actual security implications of giving out FTP
credentials that are required to proceed. This is similar to how the WordPress core updates and
plugin updates work. See Chapter 13 on securing your WordPress installation for information about
directory permissions.

In short, the Theme Installer is really slick and convenient for development to test out new themes,
but because of possible security implications, carefully consider its use in a production environment.
The balance of convenience and security is often a diffi cult choice.

WHAT IS A THEME?

What actually makes up a theme? You have an idea of what themes do, but how do they do it and
what’s really involved? As previously mentioned, a theme does several things, including structuring
your content and providing the personality of your website. This is done through a combination of

c09.indd 213c09.indd 213 12/6/12 1:21 AM12/6/12 1:21 AM

214 ❘ CHAPTER 9 THEME DEVELOPMENT

fi les and fi le types. You will notice a mix of PHP fi les, CSS fi les, and JavaScript fi les in the theme.
A good WordPress theme keeps the style, which is CSS, separate from the structure and logic,
which make up the PHP fi les. Although there are always reasons for breaking the rules, striving to
keep these separate will improve the maintainability and effi ciency of your theme. Each theme has
variations on these fi les and each theme’s fi les are different.

Template Files

Template fi les are the meat of your theme. Template fi les are PHP code fi les that control what
content is shown to your visitor. These fi les also generate the HTML for the browser to control
how your content is shown. WordPress actually decides which template fi le to use based on the
content requested. Certain template fi les are used for different tasks. At fi rst glance, the quantity of
template fi les in a theme can be daunting. Although each theme is different, some have only a couple
of fi les, while others can be very complex. After you learn the different fi les involved in a theme,
you will review the template hierarchy, which is the mechanism WordPress uses to determine which
templates to use when.

This template hierarchy, covered later in this chapter and the numerous types of template fi les
available can be overwhelming when you are starting out on theme design, but you will develop an
appreciation for the power of this setup. This fl exibility allows for a huge amount of control over
your site and what is delivered to the browser, which is the beauty of WordPress and defi nitely one
of its strongest traits.

CSS

WordPress themes truly strive to separate content from style. A theme developer can ignore these
guidelines and create a poorly divided theme, but a good theme developer does this well.

A theme must have at least one cascading style sheet. The primary style sheet for the theme must
be named style.css. In addition, the fi rst few lines of this style sheet fi le must adhere to certain
guidelines. These specifi c requirements are covered later in this chapter in the “Style.css” section.
WordPress uses this information to determine which themes are available to the WordPress site and
to make them show up in the Appearance Control Panel. If the style sheet header is not coded to the
standard expectation of WordPress, it will not show up in the Control Panel.

The style sheet is just what it sounds like. It is where you put all your CSS styles. How you structure
it, or what you do with it, is entirely up to the theme developer. CSS development is both an art and
a science and a whole topic worthy of its own discussion. This book does not cover the intricacies of
CSS, but Wrox has a number of excellent CSS titles that can assist you on this topic.

Images and Assets

The theme probably includes some image fi les and other creative assets or JavaScript fi les such as
jQuery plugins. These assets are used in your theme to give your website a special look and feel — the
look you want. How these fi les are structured in your theme is up to you; generally, they are placed in
a subfolder of the theme’s main directory, such as img/, images/, assets/ or js/ depending on the
fi le type. One of the nice things about themes being compartmentalized and packaged as they are is
that the images can be referenced with relative paths from your CSS fi le.

c09.indd 214c09.indd 214 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme ❘ 215

In addition, these creative assets can be referenced from your template fi les using built-in WordPress
functions such as bloginfo('stylesheet_directory'). This keeps the theme very portable, if
done properly.

Plugins

As covered in Chapter 8, plugins contribute advanced functionality to a website. Some themes require
specifi c plugins because the functionality is part of the theme’s personality, or they are needed to
achieve a certain purpose in the theme. These plugins may be packaged with the theme or may require
separate downloads. All plugins reside in the plugin folder. So while plugins are not directly part of
the theme, they may be required to make the theme behave as the theme creator intended.

CREATING YOUR OWN THEME

Now you know how to install and activate a theme on your site as well as what the different aspects
of the theme are. It’s time to take the next step and make your own theme. You can start a theme
from scratch, but why not stand on the shoulders of giants and start with a theme that is similar
to the look you want? Or, if you cannot fi nd one, start with a theme framework where most of the
heavy lifting is done for you. There is no sense in reinventing the wheel, especially when you can use
the power of open source software and start from working code.

Project Themes vs. Child Themes

Before diving in, let’s talk about theme development strategies. Essentially, there are two classes
of themes used in daily development. Which kind you choose to create depends on the amount of
customization and the specifi c project you are producing. The goal of this section is not to show that
one is better than the other; you, as the developer, will have to determine what meets your needs
and goals.

Let’s fi rst discuss project themes. These are one-off themes, often a modifi cation of an existing
theme to meet the specifi c needs and design goals of a single project. These could be greenfi eld
project themes built entirely from scratch or they could be a fork of an existing theme that you
modify for the purpose of your project. In addition, there are starter themes that are designed to be
the foundation for a project theme. Sometimes these themes are called bare-bones or naked themes.
They intentionally have minimal styling and function as a blank slate with just enough to get you
started. The reason to choose a project theme for your project is you have full fl exibility to edit
the PHP and template fi les. However, in doing so, you lose the ability to update the starter theme
without steamrolling your customizations.

A second option is what is called a child theme. A child theme inherits from a parent theme. That
means you get all the functionality and styling of the parent theme and then override certain aspects
with your child theme. A child theme can take two different approaches. If you have found a theme
that mostly fi ts your project’s needs and you can make cosmetic changes or minor functionality
adjustments, then this is the way to go.

Another approach is to use a theme framework. Theme frameworks are much like starter themes for
project themes, except they are designed to be parent themes to your child theme. Theme frameworks

c09.indd 215c09.indd 215 12/6/12 1:21 AM12/6/12 1:21 AM

216 ❘ CHAPTER 9 THEME DEVELOPMENT

create the groundwork for your theme. You create a child theme of that theme framework with all
your modifi cations. By using a child theme and a theme framework, you can make modifi cations
to your child theme and retain the ability to update the framework as new revisions come out.

You may have put it together already that technically there is a third approach. You can develop
your own theme framework or parent theme to use in your own projects fi rst, and then use that to
make your child theme for your specifi c project.

The strategy you take really depends on your project’s goals and needs. To reiterate, every project is
different and every developer is different. You will ultimately have to decide which method works
for you and your project, and balance future maintainability with functionality requirements. In
general, if you are modifying a theme, a child theme is the proper approach. However, in the real
world (including but not limited to deadlines and budgets), project themes can offer the fl exibility
you need.

For the sake of going in-depth, you are going to explore a project theme in this chapter. With the
basics of a project theme under your belt, you will be able to apply these principles to child themes
as well. You will come back to child themes and theme frameworks at the end of this chapter for
some more discussion.

What to Look for in a Starter Theme

Sometimes it is easiest to fi nd a theme close to what you have in mind, use this as your starter
theme, and modify it. At the minimum, you can add your own logo. Of course you have to pay
special attention to the licensing on the theme. Conveniently, themes in the wordpress.org Theme
Directory are all GPL themes, so you can modify and use them however you desire.

Things to consider when starting from a working theme include:

 ➤ Licensing on the original theme

 ➤ Code quality

 ➤ How much modifi cation will be required

 ➤ Source artwork for the creative assets

You will want to make sure that you are permitted to change the source theme you are starting
with. You will also want to review the code quality of the theme because you will be the one making
the modifi cations going forward. Does the theme accomplish the same presentation goals as your site,
template-wise; does it convey your data the way you want it conveyed? There is no point in starting
with a theme that you have to completely retool, if this is the case, you’d be better off starting with
a theme framework and making a child theme. Does the theme have enough CSS hooks for you to
style? Was search engine optimization (SEO) a consideration when the theme was developed? How
much modifi cation will be needed to meet your requirements and will you be happy with the end
result? Finally, does the theme come with source art, like the original Photoshop document, for you
to modify? If not, do you need it, or will you be able to re-create any assets you must have?

There are many considerations when developing a new project theme or modifi ed child theme for
either yourself or a client. The convenience of modifying a pre-built theme is quite a temptation
when you need to get a site up and running and out the door quickly. In practice, many sites have

c09.indd 216c09.indd 216 12/6/12 1:21 AM12/6/12 1:21 AM

http://wordpress.org

Creating Your Own Theme: Getting Started ❘ 217

been built this way, where a client could select a stock template with a few minor modifi cations
needed to quickly launch a new site. The catch is when a site goes beyond these simple modifi cations
and you are stuck with modifying a poorly built theme. For that reason, even if a client likes a
particular theme preview, you may fi nd it easier in the long run to rebuild a similar theme from
scratch with a starter theme as the launching point.

CREATING YOUR OWN THEME: GETTING STARTED

Creating your own theme can be as simple or as complicated as you want it to be. Sometimes, you
merely want to change a logo or a color and it is a basic process. Often, you are creating a theme
from scratch to meet a certain need or condition, or solely to obtain a specifi c design look and feel.
Whatever your motivations are, this section discusses the basics for getting a new theme and site
design up quickly using the Twenty Eleven theme as a foundation. This example uses Twenty Eleven
because it ships with WordPress, not because it is endorsed as the best choice for a starter theme. In
practice, however, it has been used both as a starter theme and a parent theme for client projects.

In the next several sections, you will tour the Twenty Eleven theme as an example of the elements
of a working theme. You will also take this opportunity to modify the theme into your own version
with your own customizations allowing you to leave the existing Twenty Eleven theme intact. It
should also be mentioned that the Twenty Eleven theme uses HTML5 elements and an HTML5
shim. HTML5 is covered in more detail in Chapter 12, but just be forewarned that while using
HTML5 is becoming more and more commonplace every day, it is still on the newer edge of web
technology and all browsers may not support it.

Essential File: Style.css

The style.css fi le is what WordPress uses to reference your theme, and this fi le is required for your
theme to work. You could create a new theme with only a style sheet and index.php template fi le,
although the index fi le can be empty. Using the power of WordPress’ theme hierarchy, WordPress
automatically substitutes missing templates if your new theme does not have them. More on that
later, but understand that a customized style sheet is what allows you to get started creating your
own theme.

NOTE In practice, a style.css fi le is all you need to create a new theme. See the
section, “Theme Hierarchy and Child Themes,” later in the chapter.

When creating your own styles.css for your new theme, the fi rst few lines are absolutely critical.
These lines provide information to WordPress to use in the theme Control Panel and further
reference your theme in the core. Your fi rst few lines should read as follows (substitute your
information, of course):

/*
THEME NAME: MyTheme
THEME URI: http://www.mirmillo.com/mytheme/
DESCRIPTION: Theme for my new site. Based on Twenty Eleven.

c09.indd 217c09.indd 217 12/6/12 1:21 AM12/6/12 1:21 AM

http://www.mirmillo.com/mytheme/

218 ❘ CHAPTER 9 THEME DEVELOPMENT

VERSION: 1.0
AUTHOR: David Damstra (and friends)
AUTHOR URI: http://mirmillo.com/author/ddamstra
License: GNU General Public License v2 or later
License URI: http://www.gnu.org/licenses/gpl-2.0.html
Tags: dark, light, white, black, gray, one-column, two-columns,
left-sidebar, right-sidebar, fixed-width, flexible-width,
custom-background, custom-colors, custom-header, custom-menu,
editor-style, featured-image-header, featured-images,
full-width-template, microformats, post-formats,
rtl-language-support, sticky-post, theme-options, translation-ready
*/

The information here is pretty self-explanatory. There is an additional optional fi eld for theme
hierarchy, covered later in the chapter. Make sure your theme name is unique to your installation.
If you intend to release your theme for public use, either for free or for a premium, you should try
to come up with a unique name to reduce naming collision in the directory and other installations.
In addition, if you are deriving your theme from another theme, license permitting of course, you
should uphold the license and copyright information from the original theme. Once you have
addressed this required information for WordPress, the remainder of the fi le is traditional CSS and
subject to the rules and structure imposed as such.

To reiterate, you are making a copy of the Twenty Eleven theme and making it your own.
This is not a child theme process. Child theme functionality will be covered later. In some cases,
the workfl ow fi ts better if a new theme is created by copying and renaming the starter theme to a
new folder and revising the style.css to refl ect the new project. This technique has pros and
cons, but it works well for some teams because the foundation theme does not change often enough
to warrant more complex methodologies. Plus, when you have a theme in production, you do not
want a change to the parent theme to cause a cascading rendering issue in your successfully deployed
site. Creating a copy and making a working theme in this new directory removes the dependency
on future browser rendering testing, which is a time- and human-intensive procedure — that
is, no one has automated this procedure yet. In the event that there is a substantial change to the
parent theme, changes can be ported to the derivative themes on a case-by-case basis and tested as
needed. Making a copy of the starter theme also enables you to create a hand-crafted CSS fi le by
modifying the actual theme fi les rather than overriding the styles and carrying that additional
byte baggage.

Moving forward, CSS rules are written out in the style.css fi le to turn your minimal layout into
the professionally designed theme you are creating. Because you are working on your own copy
of Twenty Eleven, a fork of it, so to speak, you can edit your own theme’s style sheet directly. CSS
coding is outside the scope of this book and if done well, is an art and skill. Again, Wrox has several
great books on working with CSS.

Showing Your Content: Index.php

When creating your theme, you often have a chicken-and-egg problem. Maybe you are lucky and
you know exactly what content is going to be published on your WordPress site, and exactly how
it’s going to be structured. Maybe you even know exactly how the fi nal theme is going to look, or
you’ve had a professional designer create some mock-ups for you. But odds are, your site is going to

c09.indd 218c09.indd 218 12/6/12 1:21 AM12/6/12 1:21 AM

http://www.gnu.org/licenses/gpl-2.0.html
http://mirmillo.com/author/ddamstra

Creating Your Own Theme: Getting Started ❘ 219

grow organically, and to see how the design, and therefore the style sheet, is going to play out, you
need to have some content to display.

You can use certain stock content fi les to import into your site and work through all the styles, or
you can start building your site. Theme Unit Tests and stock content fi les are covered in Chapter 3.

The index.php fi le is the default template of your site. WordPress has a built-in decision engine
that decides which type of information your visitor is requesting and then determines if there is
a template fi le available for that information type. This hierarchy is covered later in the chapter,
but the index.php template is the default, or template of last resort. If WordPress does not
determine that there is a more specifi c template to use, index.php is it.

Usually, the index.php fi le contains your standard loop. This is a traditional blog format where the
posts are displayed in reverse chronological order. For example, the following is some of the code
from Twenty Eleven’s index fi le:

<?php if (have_posts()) : ?>
 <?php twentyeleven_content_nav('nav-above'); ?>
 <?php /* Start the Loop */ ?>
 <?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('content', get_post_format()); ?>
 <?php endwhile; ?>
 <?php twentyeleven_content_nav('nav-below'); ?>
<?php else : ?>

As covered in Chapter 5, the loop is really the heart of WordPress. It is the most important concept
to grasp because this is how your content is selected and ordered for publishing. You may look at
the preceding code snippet and notice that the loop is really a small part of the code and that the
content of the posts is not even being rendered in HTML.

And you would be correct. The preceding snippet uses the get_template_part() function, which
was introduced in WordPress 3.0. This is a WordPress function that is very similar to PHP’s
include() and require() functions, but it is more powerful because it is WordPress-specifi c. The
get_template_part() function allows the theme developer to pull out specifi c code components for
reuse, or for replacing in child themes.

In the preceding example, WordPress is looking for a specifi c PHP fi le to include as the rendering
of the posts in the HTML. This is actually a fairly complex example because it uses the
get_post_format() function to fi ll in the second parameter of the include. Get_post_format()
will do exactly what it says and return the format of the post. Post formats are covered a little later
in this chapter. For the sake of this example, just know that if the post were marked as an image,
this function would return image, or if it were published as a traditional post or marked as standard
in the Add New Post Panel, it would return “false.”

The get_template_part() function will look for the template fi le in the current theme directory,
fi rst as the specifi c version using the second parameter and then for the generic version ignoring the
second parameter. That is, if you use the following code in your theme:

<?php get_template_part('content', 'index'); ?>

c09.indd 219c09.indd 219 12/6/12 1:21 AM12/6/12 1:21 AM

220 ❘ CHAPTER 9 THEME DEVELOPMENT

WordPress will fi rst look for fi le named content-index.php in your theme folder and, if it cannot
fi nd that fi le, will settle for content.php. If you are creating a child theme and neither of the
preceding fi les is found, WordPress will continue the search in the parent theme folder.

In the Twenty Eleven example, the get_post_format() function is performing as a switch to pull
in the desired content template for the appropriate post format. You will notice in the Twenty
Eleven theme that there are many content templates — one for each post format type. This allows
the theme developer to control how the different post formats are rendered in the browser.

Another advantage of this tactic is breaking your code into smaller, manageable portions. You’ll fi nd
this compartmentalization makes it easier to debug should you develop any problems with future
changes, or need to add new functionality.

Showing Your Content in Diff erent Ways: Index.php

The index.php fi le is really the most important template fi le in your theme. Although you cannot
have an active theme in WordPress without styles.css — because that is how WordPress knows
you have the theme available — index.php does the heavy lifting.

In the early days of WordPress, the index template was the only template. The whole theme was just
this one fi le, and it was really just the loop. That worked fi ne for WordPress when you used it as a
traditional blog and this bloggy look is probably why WordPress is still derided as a blog engine.

Hopefully you are reading this book because you know WordPress can be so much more, or if you
did not know, that you are realizing it now. Your index template is very important; this cannot be
stressed enough. It is the template of last resort that WordPress will use when it cannot fi nd a more
specifi c one to use (see the section, “Template Hierarchy,” later in the chapter.)

Nevertheless, your index fi le does not have to be a single loop showing your most recent posts.
That is very traditional, and may work well for your site, but you can branch out. Your index fi le
can be structured in so many different ways, it is truly limitless. It could contain multiple different
loops from different tags or categories, or it could contain no loops at all. The index template could
function as your error page, where you have more specifi c templates for every other piece of content
in your site.

CREATING YOUR OWN THEME: DRY

As just discussed, these are the basics; WordPress requires a style.css fi le with properly
formatted header information, and a theme must have an index.php template. Now you want to
expand your theme to use more template fi les and capitalize on the robust theme engine found in
WordPress.

A good developer knows that you do not want to repeat code in multiple places; it is a bad design
and gives your code one of those nasty smells. (You knew that right?) The code smell is called Don’t
Repeat Yourself (DRY) and is, in fact, one of the easiest smells to get a whiff of and avoid. When
you fi nd yourself tempted to cut and paste a code block from one template to another, that should
be your fi rst whiff. Here is your opportunity to break out your templates into reusable parts. There

c09.indd 220c09.indd 220 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: DRY ❘ 221

are three obvious places where you can do this because you will reuse these components on nearly
all pages on your site to give it that cohesive look and feel and structure. The header, the footer, and
the sidebar information is essentially the same on all pages. You will also learn how to tweak these
included fi les with additional logic to handle design exceptions.

Header.php

You may think this fi le is a misnamed, but it is the standard name of this fi le that WordPress looks
for. The header.php fi le includes everything at the top of your rendered page, up to the content
area. This can be confusing because a properly formatted HTML document includes its own <head>
information, which has its own special requirements. This header.php template fi le includes the
HTML head, but it also includes the start of the HTML document and usually includes the site logo
and navigation, assuming you are using an across-the-top horizontal navigation scheme. It can also
include any additional elements at the top of your page, such as secondary navigation or a search area.

Because this fi le includes so much more than the HTML header, the tendency is to take the printing
term and call this area the nameplate, as in the nameplate of a newspaper or magazine. However,
stick with tradition and leave the fi le name header.php in order to remain compatible with the
built-in functionality of WordPress.

When creating your header template fi le, a very important WordPress function must be included:
wp_head(). This is a hook for WordPress to be able to attach certain functionality into your site
header and is also used by plugins.

The wp_head() function is dropped in your HTML <head> node and is critical to the long-term
compatibility and functionality of your theme so make sure this is included.

Now that you have broken out the nameplate section of your pages into the separate header.php
template, if you were building a theme complete from scratch you would need to adjust your
index.php fi le to include it. You could use the traditional PHP include or require family of
functions, but the WordPress core functionality has a handy function to get around the theme
paths. This is similar to the get_template_part() function discussed earlier, but there is a specifi c
function for the header template. At the top of your index.php (and subsequent template fi les
discussed later) simply add the following code:

<?php
 get_header()
?>

This function automatically includes the fi lename header.php from the current theme’s directory
into the current fi le for rendering. This function does not have any additional functionality over a
PHP include besides determining the correct include path for you, but it is much more readable
when working on a theme.

Optionally, you could split out additional components from your header.php fi le and include
them back in with PHP includes. Occasionally, if a site has a particularly long or complex global
navigation, it is broken out for inclusion. In practice, working on smaller fi les is easier for editing
because each template fi le has a specifi c function and reduces the complexity of debugging.

c09.indd 221c09.indd 221 12/6/12 1:21 AM12/6/12 1:21 AM

222 ❘ CHAPTER 9 THEME DEVELOPMENT

NOTE In a past life, one of the authors was called in to work on a web
application where the entire application was created in a single fi le and the
functionality was handled by triggering specifi c functions. Although the
functions were nicely broken out, any time the application had to be debugged,
the error messages were nearly meaningless. Although the line number would
change (and skyrocket into the multiple thousands) they all occurred in
index.php and inevitably the whole application had to be traced to determine
what happened.

Imagine how much easier it would be to troubleshoot a problem on the
application if the error message indicated that the error took place in a 100-line
navigation fi le, rather than a 10,000-line complete application fi le.

Everyone writes bad code in their careers, and certainly we (the authors)
are no exception, although none of us wrote this atrocity. What we are saying
is: do yourself a favor and break code into smaller, manageable fi les whenever
possible.

Footer.php

In the same vein as the header.php fi le, everything below your content area should be separated
out into a footer fi le. The nature of footer fi les has changed recently. Historically they have
been the copyright and contact information, but in recent years, this real estate has been expanded
to include additional navigation options and information relevant to your site. Most modern
themes, including Twenty Eleven, include widget areas in the footer for customizable content.
Widget areas are discussed later in this chapter. What you put in your footer is up to you, but
because it remains by and large the same on every page, it is a prime candidate for breaking out
into a separate include.

Again, make sure you incorporate the wp_foot() function into your footer template. This function
allows WordPress to inject any necessary information from your active plugins and, as a rule, will
include your </body></html> closing tags.

Similar to the way your header template is included, WordPress offers the same functionality for
your footer information with its own special include function. At the bottom of your template fi les,
add the following code:

<?php
 get_footer()
?>

Sidebar.php

Another candidate for breaking out is the sidebar, which is everything to the right or left of your
content. Your sidebar could include the navigation of your site, if you have elected a vertical
navigation scheme, or perhaps less important supporting information for your site content.

c09.indd 222c09.indd 222 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: DRY ❘ 223

The Twenty Eleven theme allows for either a right or left sidebar using the same sidebar.php fi le
and places it with CSS. However, you could have multiple sidebar fi les for each column or specifi c
sidebars for different pages.

You need to consider a number of different issues when working with sidebars. You have to decide
fi rst how many sidebars you are going to have. Second, you have to decide if they are going to be
static sidebars, widgetized sidebars, or a hybrid. Finally, you have to determine how the HTML is
structured so that you can make the CSS put the sidebars in the correct spots. Then you have to test
in your target browsers and in all likelihood start over. Such is the life of the web developer.

As mentioned, the Twenty Eleven theme’s stock sidebars are both the same fi le, whether on the right
or left, and are fully widgetized. This enables you to sketch up a site with relative ease and use the
WordPress Control Panel to place widgets as needed.

In your template fi les, place the following code to include the sidebar.php fi le:

<?php get_sidebar(); ?>

Sometimes having both sidebars in the same fi le does not pan out in the design, or more likely,
the CSS. Or, you have broken out the sidebars into individual fi les for each sidebar location. For
whatever reason, you can create two sidebar fi les for the traditional left and right places. For
example,

<?php
 get_sidebar('right');
?>

gets the fi le named sidebar-right.php, as indicated in the parameter of the function call, and
includes it in the appropriate place. Again, this is similar to the get_template_part() function but
is specifi cally designed for sidebars and is much more readable in the code.

More advanced theme frameworks have multiple sidebars that deviate from the common notion
that a sidebar is only vertical space on the left and right of your content. Some of these theme
frameworks have what are essentially sidebars above, below, and even in the middle of the post
loops. Having multiple widgetized areas like this transfers some power to the site administrator who
can now place WordPress widgets all over the layout of the page.

An important consideration when working with sidebars is keeping the balance between what
portions are widgetized — meaning they can be controlled and managed by the content creator
in the Control Panel — and what portions are hard-coded in PHP into the template fi le. Widgets
can be very powerful, especially with many of the plugins that are available. But there are also
cases where PHP code in the template fi le will get the job done and the content does not need to be
updated by the administrator or is using built-in WordPress functionality to keep itself updated.
Keeping this balance right is a developer decision.

Deviations from the Norm: Conditional Tags

You have been a good developer and broken out all your repeating code snippets into their own
templates or inclusion fi les. Good job, but the marketing director just called, and even though the

c09.indd 223c09.indd 223 12/6/12 1:21 AM12/6/12 1:21 AM

224 ❘ CHAPTER 9 THEME DEVELOPMENT

site is almost done, and he signed off on the design, he forgot to tell you that all the pages and posts
in the Ponies category are supposed to have a pretty rainbow in the nameplate next to the site’s logo.
Personal taste aside, this sucks, because you just made all the header.php fi les the same, and now
only a handful of them need some special consideration.

As with all things open source, there are many ways to handle this situation. You could probably
handle such a simple example with some well-crafted CSS and the theme’s body class alone.
Alternatively, you could create a whole category template fi le (discussed later) to style just this
category. But because you’re dealing with only a tiny element, it seems like overkill to create a whole
new template fi le.

But wait — all is not lost. WordPress developers have had to deal with marketing directors before
and knew this type of situation would come up eventually, which is why they included conditional
tags. WordPress has many conditional tags built in, and covering each one is outside the scope of
this book, not to mention particularly boring. But rest assured — these conditional tags exist and
can address specifi c needs such as what type of page is being viewed, or the meta information about
the content on the page.

To appease the marketing director, you might include something like this in the header.php fi le:

<header id="branding" role="banner">
 <hgroup>
 <h1 id="site-title"><a
 href="<?php echo esc_url(home_url('/')); ?>"
 title="<?php echo esc_attr(get_bloginfo('name', 'display')); ?>"
 rel="home"><?php bloginfo('name'); ?>
 </h1>

 <?php
 if (is_category('Ponies')) { ?>
 // overlay a pretty rainbow on the logo for the ponies category
 <img id="raibow"
 src="<?php bloginfo('template_directory');?>/img/rainbow.png"
 alt="OMG! Ponies! " />
 <?php } ?>
 <h2 id="site-description"><?php bloginfo('description'); ?></h2>
 </hgroup>
 ...
</header>

Now, any time the category of the content of the current page is in the Ponies category, your header
also includes the rainbow.png. With PNG’s alpha transparency, it actually turns out nicely. This
example only works for the category pages and not for the individual single posts pages in the
Ponies category.

CREATING YOUR OWN THEME: CONTENT DISPLAY

A good theme enhances the content on your site. Not only is it visually appealing, suitable for the
nature of the site, and brand appropriate, but the theme should also structure the content properly.
WordPress has a variety of different templates and functionality to meet the needs of every site type.

c09.indd 224c09.indd 224 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Content Display ❘ 225

The challenge here is to uncover the best combination of template fi les to include in order to achieve
the optimal organization of your content. Not all themes need to have every template fi le type, and
most do not; it is best to mix and match templates to meet your needs.

Customizing Your Homepage: Front-Page.php

Homepage — who uses that term anymore? It sounds so 1990s, but what else should you call it?
This section covers the fi rst page on your site when a visitor goes to your root URL. Apache users
know that the index page of your site, the homepage if you will, is called “index.” It is usually called
“default” on a Microsoft IIS server. The WordPress Control Panel refers to this as the front page;
you can run with it for consistency’s sake.

A theme should always have an index.php fi le because after all else, index.php is the template
of last resort. What if want your front page to have a special layout, perhaps one that features
something about your site — product pages, for example? You do not want to mess with your
index.php layout because you do not want to reinvent your entire theme just to accommodate this
one special layout.

Plugins and other tricks are available to handle this scenario; in fact, you can even use the
WordPress Control Panel to set a static front page that is one of your existing published pages. But
in this case, you are talking about a custom layout or HTML rendering, not a traditional page. The
easiest way is to use the built-in template hierarchy and set a special front page by using a
front-page.php template.

There are actually two template fi les that can function as your front page: front-page.php or
home.php. In some older themes and even in the fi rst edition of this book, home.php was the only
option. With WordPress 3.0, front-page.php became the preferred template fi le name for the front
page. There is a little more involved here, depending on how you set your reading preferences in the
Dashboard. Later in this chapter, you will see the template hierarchy and how these two templates
actually rank.

Creating a special layout, and therefore template fi le, for your front page is useful when your front
page is unique. By and large, creating a unique front page is a marketing tool. Some reasons for
creating a unique front page include:

 ➤ Featuring or showcasing a product or service

 ➤ Featuring or showcasing other portions of your website

 ➤ Driving traffi c to a certain portion of your site

 ➤ Explanatory steps of the processes involved with your product

 ➤ Delineating tiered levels of service that you provide

Take a look at the basic example in Figure 9-1, where the front page is showcasing products or
services that the website is marketing. These products would have their own supporting pages
or posts in your site. Your front page has a nice image showcase front and center with links to
the individual pages. You’ll use jQuery to enhance this showcase and rotate through the images.
Alternatively, you could use a different JavaScript toolkit or Adobe Flash, but jQuery is already

c09.indd 225c09.indd 225 12/6/12 1:21 AM12/6/12 1:21 AM

226 ❘ CHAPTER 9 THEME DEVELOPMENT

included with WordPress and, frankly, it rocks, so why not use that. The bottom portion of the
layout will include a recent news section.

FIGURE 9-1: A special template fi le can make your front page look unique.

If you cannot tell already, this is going to involve multiple loops. You will use the fi rst loop to create
the content for the showcase. This loop will pull posts from a specifi c category or a custom post
type. That way, the site admin can add and remove content from the showcase as needed, without
visiting the code at all. Of course there will be certain design restrictions, such as image size and
format and possibly certain conventions that must be followed in the post, but the capability to
change this information in the WordPress Control Panel is a very powerful tool.

The showcase loop, sometimes called slideshows, could look something like this (in this case, you
are using custom post types, which are covered in Chapter 7):

<div id="showcase">
 <?php
 global $post;
 $args = array(
 'post_type' =>'slides',
 'numberposts' => -1,
 'orderby' => 'rand'
);
 $slider_posts = get_posts($args);

 // show showcase only if slides exist
 if($slider_posts) {
 foreach($slider_posts as $post) : setup_postdata($post);
 // get image
 $thumbnail = wp_get_attachment_image_src(get_post_thumbnail_id(),

c09.indd 226c09.indd 226 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Content Display ❘ 227

 'home-slide');
 if ($thumbnail[1] == "600" && $thumbnail[2] == "160") {
 //checking thumbnail dimensions in css ?>
 <div id="feature-<?php echo $post->ID; ?>" class="slide">
 <a href="<?php the_permalink(); ?>" title="<?php the_title(); ?>">
 <img src="<?php echo $thumbnail[0]; ?>" title="<?php the_title(); ?>" />

 </div>
 <?php } ?>
 <?php endforeach; ?>
 <?php wp_reset_postdata(); ?>
 <?php } ?>
</div>

This creates an HTML rendering, as shown in Figure 9-1.

Take a look at what is happening here. The whole showcase loop is wrapped in a <div> with an
ID of showcase. This is for the jQuery to hook onto later. In the PHP code, you are creating
a custom query for the loop. The query is looking for custom post types called slides, which
you would have previously established in the themes functions.php fi le and also set up in the
WordPress Control Panel. This query is pulling all the slides from the custom post type and
returning them in random order. The loop then proceeds to create <div> elements, each with a
unique ID, again for jQuery and CSS hooks. The custom post type is set up to use the WordPress
featured image as the slide content. This allows the site maintainer to upload the slide image that,
in turn, links to a special landing page with more information in the post body. The preceding code
snippet will only display the slide graphic if it is set to the specifi c dimensions, 600px wide by 160px
tall in this case. Finally, countless jQuery plugins are available that can turn this now unwieldy
block of content on your page into a very elegant slideshow.

The bottom section could be a traditional loop similar to the index.php template stock loop. The
Twenty Eleven theme does not come with either a front page or home page template built in because,
when using these templates, you are already on your way to creating a custom theme. Also, this is
not the only way to get this functionality. As of WordPress 2.1, you can control what is shown on
your front page and set it to any static page you have created and then create a special page template
to accomplish the previously described design decisions. You can also build multiple loops — one
using posts in a category for the slides, the other loop excluding the category for the news. This is
how you used to do it. Again, how you choose to skin this cat is one of those choices you have to
make as a developer as you balance the needs of your client with the ease of maintenance for your
developers.

Show Your Older Posts by Date: Archive.php

Eventually, if you are diligent, your site will have older content. And if you are really industrious
you will be able to do those fun “One year ago on my site I told you about X” posts. Eventually, you
may have copious amounts of content, so much that it is not feasible or appealing to show it all on
the front page. That is, if content is being generated on a regular schedule, there will come a point
in time when you will want to refer to something that is no longer on the front page or in the Recent
Posts lists; this is the time when you need to delve into the vault of past content.

c09.indd 227c09.indd 227 12/6/12 1:21 AM12/6/12 1:21 AM

228 ❘ CHAPTER 9 THEME DEVELOPMENT

This is where the archive.php template steps in. You have many ways to present your older
content. Harkening back to WordPress’ blogging origins, the most obvious method is to continue in
reverse chronological order of your posts.

If you do not have an archive template, WordPress simply uses your index template to show the
older posts. The Twenty Eleven theme has an interesting take on the archive.php template that
dates back to some of the original starter themes such as the Sandbox theme. This approach is very
fl exible and creates date-based format visuals for the archives. Consider this code from the Twenty
Eleven archive.php template:

<h1 class="page-title">
 <?php if (is_day()) : ?>
 <?php printf(__('Daily Archives: %s', 'twentyeleven'), '' .
 get_the_date() . ''); ?>
 <?php elseif (is_month()) : ?>
 <?php printf(__('Monthly Archives: %s', 'twentyeleven'), '' .
 get_the_date(_x('F Y', 'monthly archives date format',
 'twentyeleven')) . ''); ?>
 <?php elseif (is_year()) : ?>
 <?php printf(__('Yearly Archives: %s', 'twentyeleven'),
 '' . get_the_date(_x('Y', 'yearly archives date format',
 'twentyeleven')) . ''); ?>
 <?php else : ?>
 <?php _e('Blog Archives', 'twentyeleven'); ?>
 <?php endif; ?>
</h1>

This code block shows how the theme’s archive template displays a unique header depending on
whether the visitor is looking at the archived posts for a day, a month, or a whole year, or traversing
by conventional pagination.

Except for the fact that WordPress is inherently date-based, the specifi c archive template is not
all that important. Although having the date information is useful when determining how recent
certain information is, in reality, do you ever go back and look for posts published in May of 2007?
More likely, you are looking for posts on a certain topic or fi led in a particular category or topic.

Showing Only One Category: Category.php

Enter the category template. The category.php template creates a loop of posts from only a
specifi c category. The category template is invoked when a visitor hits a specifi c URL with the
category name in it. This could be something like http://example.com/category/zombies. In the
category.php template, WordPress has already determined that your visitor is looking for posts
in the particular category requests, so the default loop automatically makes this query for you, no
special interaction required.

When you use this template, you can generically display category posts and information, this is
exactly how the Twenty Eleven theme is set up. For example, the Twenty Eleven theme places a
header and category explanation information pulled from the category description, if it is available:

<header class="page-header">
 <h1 class="page-title"><?php

c09.indd 228c09.indd 228 12/6/12 1:21 AM12/6/12 1:21 AM

http://example.com/category/zombies

Creating Your Own Theme: Content Display ❘ 229

 printf(__('Category Archives: %s', 'twentyeleven'), '' .
 single_cat_title('', false) . '');
 ?>
 </h1>
 <?php
 $category_description = category_description();
 if (! empty($category_description))
 echo apply_filters('category_archive_meta',
 '<div class="category-archive-meta">' . $category_description . '</div>');
 ?>
</header>

This covers the default category case, which is a nice default fallback template to have. But what if you
want to make each category template have a unique look — for example, a color scheme or an icon?

Assume your pony-and-rainbow fascinated marketing director now wants a Zombie category.
Instead of using conditional tags, you can make a specifi c category template. Following the template
hierarchy, WordPress will look to see if there exists a category template that is specifi c to the
category requested in the URL. If you have not noticed yet, WordPress works from most specifi c to
least specifi c until it fi nds the proper template. WordPress will select the most specifi c template
for the type of information requested and work toward the more generic templates until it defaults
to the index.php template. This is a critical aspect to learn when deciding on your theme templates,
and it’s something you will review again.

For the marketing director, you can make a category-3.php template, for example, because the
Zombies category has an ID of 3.

The easiest way to fi nd a category ID number is to hover over the category name in the Edit
Category Control Panel and look in the status bar at the bottom of the browser window, as shown
in Figure 9-2.

FIGURE 9-2: Hover over the category name in the Control Panel to see

the category ID in the status bar.

c09.indd 229c09.indd 229 12/6/12 1:21 AM12/6/12 1:21 AM

230 ❘ CHAPTER 9 THEME DEVELOPMENT

There is a little bit of a chicken-and-egg problem when you want to create a category template for a
specifi c category. In order to name the template fi le correctly, you must create the category fi rst to
get the category ID.

Lucky for you, there is another way. Since WordPress 2.9, users have been able to make category
templates that use the slug. And the slug template fi le is preferred by WordPress over the ID-based
one. So to avoid the chicken-and-egg problem, you can create the category fi rst and assign it a slug,
in this case zombies. If you have this planned out ahead of time, you can make a category template
fi le called category-zombies.php and be off to the races.

These specifi c category templates work exactly the same as the generic category templates and pull
the posts for that category automatically. Technically, it works the other way around: WordPress
already knows which posts it is going to show you; it is just determining how to show them to you.
What you are gaining with using a specifi c category template is the fl exibility to style each category
individually.

You have probably noticed by now that with WordPress there is always more than one way to
do something. In the simple example of the marketing director, you can solve his problem with
conditional tags or category-specifi c templates, or most likely, you can meet his requirements by
using CSS because most themes have rich CSS hooks. But the extensibility of this feature is the killer
aspect. Just knowing that WordPress has the feature built in will save you one day.

Show Posts of a Specifi c Tag: Tag.php

The tag.php template functions nearly identically to the category.php template. It is invoked
when a visitor requests a specifi c tag. This template is only benefi cial if you are actively tagging the
content on your site. Most likely, you are assigning categories to content because that is a natural
human organization structure, but tagging is not as clear-cut and often feels like an additional step.

Nevertheless, if you are diligent in tagging content, a tag template is a nice addition to your layouts
and can be benefi cial to cross-pollinate posts with related content. When this template is called, the
loop automatically fi lls with posts of a particular tag for rendering. For a more in-depth look at how
the loop actually works, refer to Chapter 5.

Likewise, you can create a template for a specifi c tag. As with categories, you can use either the tag’s
ID or slug to make the template fi le. If you want a special template for the Zombies tag, you use the
slug of the tag to create a new template titled tag-zombies.php. You need to verify the tag’s slug on
the Manage Tags Control Panel.

Using the category and tag templates may not be the way you envisioned your content being viewed,
especially if you are using WordPress more as a content management system. However, simply
including these templates delivers free functionality and customizability from the WordPress core.
These templates enable your visitors to explore your content in different ways and perhaps add a
little stickiness to your site because your content is viewed in new and interesting ways. Categories
and tags group related content and using these templates create an organic presentation for
discovery of your site.

Do not brush these templates off as simply reverse chronological listings of related content, such as
an archives page. Envision creative ways to present your data; because you have visitors who are
interested in at least some of your content, why not expose them to related items?

c09.indd 230c09.indd 230 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Content Display ❘ 231

Other Archival Templates

With that in mind, WordPress’ archival templates really bloomed recently. In addition to the
templates discussed previously, you can also create special archive templates for custom taxonomies
or custom post types. Although these templates fall in the archival template hierarchy, you can really
think of any of these views as just groupings on a certain aspect of the content.

If you have custom post types set up in your theme or content, as you did with the slides in the
showcase example previously in this chapter, you can have custom archive page templates for those,
too. This template fi le has a slightly different naming convention than the rest. For the slides,
you would create a template fi le called archive-slides.php where slides is the custom post
type’s name.

Likewise, if you are employing custom taxonomies in your theme, you can make custom archive
templates for both the taxonomy and the specifi c term. WordPress will choose the most
specifi c template fi le it can, so the term templates will be chosen before the general taxonomy
templates. Custom post types and custom taxonomies were covered in depth in Chapter 7.

How to Show a Single Post: Single.php

You have set the bait with a great post headline, something witty and engaging. After the nibble,
you set the hook with your excerpt of the post, and now you caught the visitor. He has clicked
through to read the rest of the article.

The single.php template view is most likely the landing page on your site when a visitor arrives via
a search engine. Assuming you have great content, the search engine will rank the explanatory page
of your site higher than the index page, which only lists the excerpt. Therefore, it is best to invest
some time in this template because it is very commonly viewed. Enhancing this template with related
posts and other teaser content only increases the possibility of enticing a visitor to further explore
your site, bookmark it, subscribe to your feeds, or best of all, link back to you. All of these events
increase your search engine respectability.

You can display the full content of a single post with the single.php template fi le. WordPress
has decided that the visitor has requested the full content of a single post; thus this template does
not need to contain a loop, but simply a call to the the_post() function to get the data from the
database. If you look at the Twenty Eleven theme, you will notice that the single.php template
does, in fact, use a loop and the get_content_part() function to maintain consistency with the
other templates, but because only one post is being shown, this is superfl uous.

If you have a very long post, you can break it up among several pages by using the built-in
WordPress functionality or special plugins. Internet users have very mixed feelings on this.
Although general guidelines and studies have shown certain line lengths and content lengths
improve readability, some vocal visitors detest the load time wait when paginating. This is a design
choice based on your content type and site design.

Adding links that are related to this post is a great way to entice visitors to explore your site
more. Several plugins add related content to the bottom of a single post page or scan your content
for keywords and links. In practice, you will have to try these out and see how they work with
your site.

c09.indd 231c09.indd 231 12/6/12 1:21 AM12/6/12 1:21 AM

232 ❘ CHAPTER 9 THEME DEVELOPMENT

Alternatively, the poor man’s solution is to add a simple category or tag loop to grab some related-
topic posts to the bottom of the page. It could be something as simple as this:

<h2>Other posts in this category</h2>
<ul id="related">
 <?php
 $category = get_the_category();
 $my_query = new WP_Query("category_name=".$category[0]->name."
 &showposts=5&orderby=rand");
 while ($my_query->have_posts()) : $my_query->the_post();
 echo 'permalink.'">"' . $post->post_title .'"
 ';
 endwhile;
 ?>

Here you are taking fi ve random posts from the fi rst category of the current post. It’s not the most
sophisticated method, but it is a simple way to show some related content links on the single post
view. Another option is to show additional posts by the same author:

<h2>Other posts by this author</h2>
<ul id="related">
 <?php
 $author = get_the_author_meta('id');
 $my_query = new WP_Query("author=".$author&showposts=5&orderby=rand");
 while ($my_query->have_posts()) : $my_query->the_post();
 echo 'permalink.'">"' . $post->post_title .'"
 ';
 endwhile;
 ?>

While having a single single.php template will suffi ce for most sites, WordPress does offer some
more customizability for handling the individual custom post types. Using the slideshow showcase
example from before, instead of rendering the clicked through landing page using single.php, you
could create a special single-slide.php template. This template might leverage the featured image
or other custom fi elds to make it more enticing or actionable.

Display a Page: Page.php

When you’re using WordPress as a content management system, you have to make some decisions
such as whether to use pages or posts. This is like cats or dogs — people have strong feelings about
each. For the most part, this chapter has been talking about posts and custom post types.

When working with a client, you generally create hybrid designs that use both pages and posts.
Posts are used for temporal-based items, such as news and promotions, whereas pages are used for
static information that does not change very often, such as products or services. Product pages are
then augmented with related posts. This gives the client the benefi t of using the posts facets of the
website to drive traffi c to the static product pages.

c09.indd 232c09.indd 232 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Content Display ❘ 233

The page.php template works essentially the same as the single post template. There is no loop —
unless you have created a special page template, but technically that is a different template fi le — only
the call to the_post(). Yes, this is the same function as in single.php. WordPress considers the
posts and pages to be fundamentally the same type of content and the_post() gathers the content
from the database.

As with previous examples, you can also have specifi c page templates for specifi c pages based on
the ID of the page or the page’s slug. These follow the same pattern as before. In addition, you can
also have custom page templates that you can assign to any page on your site, but you’ll cover this in
more depth later in this chapter.

Display Post Attachments: Attachment.php

To be honest, we (the authors) do not think we’ve ever used these template fi les in a production
website intentionally. First introduced with WordPress 2.5, image.php was a special template just
for showing — you guessed it — images from your gallery. Since then, this branch of the template
hierarchy has grown and generalized to show any of the attachments you might add to a post based
on MIME type. Many themes do not even have this set of templates; the Twenty Eleven theme
includes an image.php but not an attachment.php template. In essence, this template works very
similarly to single.php, so much so that single.php is the next default if this template does not
exist in your theme.

The most common use for this template is to create an image.php template. This template provides
a special template strictly for viewing your media gallery. A gallery can contain many different
types of media; that is, it is not limited to images. This template will be called for any media item,
unless there is a more specifi c match, and usually includes a description of the media and comment
functionality. A great use of this template fi le would be for a portfolio site, such as a photography
studio or another artistic collection. Again, this template functions nearly identically to the single
post template, with slight variation to render an image rather than a paragraph.

Similarly, template types can be used with media types other than images. You could create
templates for video, audio, or applications; however, these would probably be very specifi c use cases,
and in the wild you would rarely see or need these templates unless you were creating a specifi c
niche website.

Template Hierarchy

With all these template fi les to choose from, how does WordPress decide which one to use? The
WordPress core is pretty smart in this regard. Based on the URL, WordPress determines what type
of content is being requested and can make a starting determination. Then WordPress works out the
specifi city of the template to be used, using the most specifi c template that matches the criteria fi rst,
and falling back to more general templates until it fi nds a match. This system works well, in that
it is fault tolerant by always cascading back to index.php but extremely powerful because, as the
developer, you can make custom templates for very specifi c situations if needed.

This is best illustrated with the fl owchart in Figure 9-3, adapted from the WordPress Codex. There
is a more complete version online.

c09.indd 233c09.indd 233 12/6/12 1:21 AM12/6/12 1:21 AM

234 ❘ CHAPTER 9 THEME DEVELOPMENT

As you can see, there is a nice decision tree happening here, and the fl exibility is very powerful. Not
all themes have or need all template fi les. But certain more customized or special use case themes
can capitalize on this hierarchy and create a unique application of WordPress.

It’s also worth mentioning that the search template hierarchy is defi ned in template-loader.php,
where a hook is defi ned before the search tree is started — template_redirect — that lets you
change the template selection process. This is used mostly for handling URL redirections, like a
“shortlink” defi ned for a page, which might hide some of the URL information normally used to
decipher what templates WordPress applies.

WARNING On some sites we have built, there have been occasions where
categories, tags, pages, and even authors have had the same or similar taxonomies.
For example, on a corporate news site, you may have a page about a department
and a department category for news about that department, and some information
may be tagged by the department name. In cases like these, the WordPress template
decision tree can get confused and make unintended choices. You can work around
this in several ways: either by carefully crafting your taxonomy, by ensuring each
slug is suffi ciently unique to avoid collisions, or by enforcing your desired behavior
via the .htaccess fi le. The crux of the issue here is how WordPress handles
permalinks, which boils down to pattern matching on the slug metadata.

search.php

is_search() is_front_page() is_page() is_404() is_attachment()

is_author() is_category()

is_archive()

is_tag()

home.php pagpe.php 404.php

fr
o

n
t_

p
a

g
e

.p
h

p

p
a

g
e

-{
id

}.
p

h
p

s
in

g
le

-p
o

s
t.

p
h

p

s
in

g
le

-{
p

o
s
tt

y
p

e
}.
p

h
p

a
tt

a
c
h

m
e

n
t.

p
h

p
{m

im
e

ty
p

e
}.
p

h
p

a
u

th
o

r.
p

h
p

c
a

te
g

o
ry

.p
h

p

a
u

th
o

r-
{n

ic
e

n
a

m
e

}.
p

h
p

a
u

th
o

r-
{i
d

}.
p

h
p

c
a

te
g

o
ry

-{
id

}.
p

h
p

c
a

te
g

o
ry

-{
s
lu

g
}.
p

h
p

ta
g

.p
h

p
ta

g
-{

s
lu

g
}.
p

h
p

ta
g

-{
id

}.
p

h
p

p
a

g
e

-{
s
lu

g
}.
p

h
p

{c
u

s
to

m
}.
p

h
p

single.php archive.php

index.php

Visitor Request

FIGURE 9-3: The WordPress template hierarchy

c09.indd 234c09.indd 234 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Additional Files ❘ 235

CREATING YOUR OWN THEME: ADDITIONAL FILES

It is tough to sort out the various template fi les into which ones are critical, which are essential,
and which are just nice to have. Each theme’s template fi le collection will be different and tailored
to match the content or design goals of the author. The truly critical and essential templates
have already been covered. In some circles, many of the following templates would fall into the
categories already discussed, so you will have to make your own decisions here. Do not think that
because these templates are being covered later, they are any less important than any other template.
Consider each template type a tool, and how you use the tools is what truly matters.

Handle 404 Errors: 404.php

A 404 page is a fact of life. Eventually, your visitors will fi nd something that went stale. In contrast
to a traditional website, WordPress really helps you avoid them because typically all the navigation
items are dynamically created by content that actually exists. But it is still possible that your visitor
will fi nd a link that is no longer around, so your 404 page comes up.

The Twenty Eleven theme provides a really good practice with the stock 404 template by including
a search box, recent posts, most used categories, and a tag cloud. This way, visitors who stumble
across this page have an opportunity to fi nd what they are looking for.

Other good practices include showing a list of possibly related content, in the form of “I couldn’t
fi nd what you asked for, but maybe one of these posts would interest you.” You do not want a 404
page to be a dead end; always offer something else to view and a way out.

At our shop, we trigger a developer e-mail or Twitter warning to let you know someone asked for
a lost URL. Especially if there is a referrer in the HTTP headers, you can track down where the
broken link originated. At the least you know something went wrong and can do some research.

Also, your 404 page should be funny. Humor is good medicine and it is nice to disarm visitors who
might be upset that what they were looking for is not there. It is good practice to expose errors to
your developers but show something useful and meaningful to your site visitor. Think back to the
days of the Twitter fail whale. As Twitter was growing, it often had scalability issues and the
fail whale was seen more often than not. But by keeping the error message lighthearted, the
Twitter fail whale has quickly emerged as an Internet icon and garnered its own cult following.

Although not strictly a template fi le, another error to hide from your visitors is a database
connection error. The default database connection error is ugly and exposes a little too much
information to your visitor, who hopefully is a good guy and not going to use that information
against your website.

WordPress introduced a new function in version 2.5 and later back-ported it to previous versions
where, if the database connection fails, WordPress looks for a db-error.php fi le in your
wp-content directory.

NOTE This fi le resides outside of your theme directory. Because there is no
database connection, WordPress does not know what theme to display.

c09.indd 235c09.indd 235 12/6/12 1:21 AM12/6/12 1:21 AM

236 ❘ CHAPTER 9 THEME DEVELOPMENT

You can put whatever code and CSS in the db-error.php template you want, except dynamic data
or WordPress functions, because they will not work without the database. This is another situation
where we place a stock db-error.php in all of our WordPress sites, with a generic but friendly error
message and then notify the development team that an error has occurred.

The following is a sample db-error.php fi le:

<?php
//error_reporting('E_ERROR');
mail('developers@mysite.com','WP SQL Connection Issue on '.$_SERVER['HTTP_HOST'],
'This is an automated message from the wordpress custom db error message file.');
?>
<html>
<head>
<title>Temporarily Unavailable</title>
<style>
body { background-color: #000; }
#wrapper
{
 width: 600px;
 height: 300px;
 margin: 2em auto 0;
 border: 4px solid #666;
 background-color: #fff;
 padding: 0 2em;
}
p { font-size: larger; }
</style>
</head>
<body>
<div id="wrapper">
 <center>
 <!-- /* This is the generic database error page that will be shown when a fatal
 db connection issue arises */ -->
 <h1><?php echo $_SERVER['HTTP_HOST']; ?> is Temporarily Unavailable</h1>
 <p>The webmaster has been alerted. Please try again later.</p>
 </center>
</div>
</body>
</html>

In the rare occurrence that WordPress cannot connect to the MySQL database, rather than showing
an ugly database error, site visitors get a friendlier error message and the developers receive an
e-mail. This also informs the visitors that no further action is required on their part, besides
checking back later, because the error occurred on the web-hosting server and not on their side. This
acknowledgment removes confusion or uncertainty on the visitor’s side. The caveat to this is that
when things go really wrong, beyond just a hiccup, the developers can get fl ooded with e-mails.

Author.php

Earlier, you were grouping historical content by category or tag; you can similarly use the author.php
template to group all of an author’s content into one view. In addition, you can create specifi c author

c09.indd 236c09.indd 236 12/6/12 1:21 AM12/6/12 1:21 AM

mailto:developers@mysite.com

Creating Your Own Theme: Additional Files ❘ 237

templates either by the author’s ID or by the author’s nicename, which is the author’s
username. As before, the human readable nicename template is preferred by WordPress over the
ID-based one.

Sometimes your site has multiple authors, such as your development team site at work. In cases like
these, a visitor may want to fi nd additional articles posted by the same individual. The author.php
template fi le shows only posts written by a specifi c author.

The author template behaves just like a category or tag loop. One nice feature of the Twenty Eleven
theme is that this template also includes any author information that the author chose to submit in
the admin Control Panel.

<?php
// If a user has filled out their description, show a bio on their entries.
if (get_the_author_meta('description')) : ?>
 <div id="author-info">
 <div id="author-avatar">
 <?php echo get_avatar(get_the_author_meta('user_email'),
 apply_filters('twentyeleven_author_bio_avatar_size', 60)); ?>
 </div><!-- #author-avatar -->
 <div id="author-description">
 <h2>
 <?php printf(__('About %s', 'twentyeleven'), get_the_author()); ?>
 </h2>
 <?php the_author_meta('description'); ?>
 </div><!-- #author-description -->
 </div><!-- #author-info -->
<?php endif; ?>

If the author submitted some biographical data, that information is published here. This
functionality could be enhanced if the profi le page had a rich text editor for the biographical
information, and possibly some expanded custom fi elds.

In production sites, these fi elds have been used to create a multi-business partner site where each
author was, in effect, a company. You can also create a Rolodex-type site using this method.

Comments.php

The comments template used to be one of the more complex templates. This template fi le handles
both the comment loop, including trackbacks and pings, and the input form for a visitor to submit
the comment in both logged-in and logged-out cases. Although these tasks are functionally related,
sorting through this template fi le, you’ll see a lot of “if . . . else” conditionals that make it diffi cult
to theme. Your theme may not even include comments, especially if you are using WordPress as a
CMS, but if it does, you can include the comments functionality templates in your other templates
with the following code:

<?php comments_template(); ?>

Countless variations on the comments theme exist for the look and feel — way too many to discuss
the merits of any in particular. One thing to consider when working on this template fi le is the

c09.indd 237c09.indd 237 12/6/12 1:21 AM12/6/12 1:21 AM

238 ❘ CHAPTER 9 THEME DEVELOPMENT

threaded comments functionality introduced in WordPress 2.7. See the WordPress Codex for more
information about using wp_list_comments().

It should also be noted that in WordPress 2.7, the comments loop was simplifi ed to look more like
a traditional post loop in the code. In addition, many new functions have been introduced to make
the comment templates much more straightforward, and the Twenty Eleven theme does a great job
of utilizing these functions. The Twenty Eleven comment template is a good place to start if you are
looking at overhauling the comment section of your site.

One particular improvement is the comment_form() function. This function now handles the
rendering of the actual comment form in the comment template. Prior to this function, all of the
form and form logic was handled in the template itself, which added extensively to the complexity.
This function was introduced in WordPress 3.0 and is pretty extensible if you need to customize
your comment form.

As mentioned, the comments template can be confusing and is a whole subtheme unto itself
because there is so much going on. Some partial theme websites have popped up that simply sell
comments themes — for example, http://commentbits.com/. Not a whole site theme, but just
the special templates for comments with a few variations. This could be a simple way to get a
stylized comment subsystem up and running quickly.

Adding Functionality to Your Templates: Functions.php

The functions.php template is not a display template, so it is not like the other templates you
have covered, but it is a very important fi le even though it does not directly display content on
your website. Chiefl y, the functions.php fi le is where the special sauce that makes your theme
tick goes. It is the place where you can put what has traditionally been called “library code.” If in
your templates you fi nd repeating code or need some special functionality, this is where it can go.
WordPress automatically includes this fi le during execution so the functions are available in all of
your template fi les.

Often when you are adding functionality you have to decide if the code belongs in functions.php or
in a plugin. A general rule of thumb is that if you are adding something that is confi gurable, as in the
user may want to disable it without affecting the look and feel of the site, it belongs in a plugin. If you
are including something that is essential to the theme and is always on, it belongs in functions.php.

The stock functions.php theme is very well commented. Each function and logic block of a
function has a one-line comment explaining what it does. This makes functions.php easy to
modify and extend. However, the majority of these functions will not need to be modifi ed in your
production site, unless you have very specifi c needs. Most of them simply add to the template fi les to
create a hook-rich HTML template for your CSS styling skills.

One thing that is important to consider when adding on to your theme’s functions.php fi le is
whether the functionality you are adding really belongs compartmentalized by theme or whether it
is standalone functionality that belongs in a plugin. This is about whether the code you are adding is
directly applicable to the theme or if it is portable and can be used no matter what theme the site is
running. This can often be a diffi cult choice, especially when you realize that you use the same hooks
and fi lters discussed in Chapter 8. In essence, the functions fi le is a library of plugins all nestled into
one fi le.

c09.indd 238c09.indd 238 12/6/12 1:21 AM12/6/12 1:21 AM

http://commentbits.com/

Creating Your Own Theme: Additional Files ❘ 239

One of the main purposes of the functions.php fi le is to enable or disable certain WordPress
features for your theme. In the Twenty Eleven theme, this is all done during the twentyeleven_
setup() function. You will notice it enables support for various features including post-formats,
custom background, post-thumbnails, and a few others. These are all features of WordPress that the
Twenty Eleven theme uses; therefore, they must be enabled. Think of this as feature fl ags. How each
feature is enabled and confi gured is dependent on the specifi c feature. For example, enabling post-
thumbnails or featured images is as simple as this:

// This theme uses Featured Images (also known as post thumbnails) for
// per-post/per-page Custom Header images
add_theme_support('post-thumbnails');

Some feature fl ags can take, or may require, confi guration information, such as:

// Add support for a variety of post formats
add_theme_support('post-formats', array('aside', 'link', 'gallery', 'status',
 'quote', 'image'));

However each feature is different and will need to be enabled and confi gured based on your theme’s
needs.

In addition, the functions fi le establishes and identifi es your navigation menus. In your functions
fi le, you introduce how many menus your theme will have and assign them names. Later in this
chapter, You will learn how to place menu locations in your template fi les and assign menus to these
locations in the WordPress Control Panel.

Similar to menus, you also identify and create widget areas in your functions.php fi le. Generally,
widget areas take more confi guration than menus do. Like menus, you register widget areas, or
sidebars, in the functions fi le and later in this chapter you will learn how to place these locations in
your template fi les.

This fi le is for creating your own behavior and functionality for your theme. You could be
introducing new presentation logic or new features that are specifi c to your needs and goals. But, also
you can override or augment existing WordPress features — for example, in the Twenty Eleven theme:

function twentyeleven_body_classes($classes) {
 if (function_exists('is_multi_author') && ! is_multi_author())
 $classes[] = 'single-author';
 if (is_singular() && ! is_home() && ! is_page_template('showcase.php')
 && ! is_page_template('sidebar-page.php'))
 $classes[] = 'singular';
 return $classes;
}
add_filter('body_class', 'twentyeleven_body_classes');

This functions adds on to the body_class() function that assigns CSS classes to the body
HTML node. The default body_class() function returns many useful classes that you can hook
into with your CSS styling, but sometimes you need something special. In the case of the Twenty
Eleven theme, the preceding function appends classes to the array that is returned based on certain
criteria.

c09.indd 239c09.indd 239 12/6/12 1:21 AM12/6/12 1:21 AM

240 ❘ CHAPTER 9 THEME DEVELOPMENT

When modifying the starter theme functions, you have to make a choice. Sometimes, if you are
making minimal changes to the fi le, you can just modify the fi le directly, accepting that this
will break any upgradeability of the theme. Alternatively, you can include your own
custom_functions.php from the functions.php fi le and make all your own custom changes here.
The caveat is that if you overwrite the functions.php fi le, either through a theme update or other
user error, you have to remember to put the include back in that fi le before your head gets too
bloody from beating it against the wall wondering why your custom functions are not running.
In practice, both of these scenarios have been used successfully.

The amount of power and control available to you in the functions fi le can be staggering and this
power can quickly grow your fi le size out of control. For example, some of the more advanced
themes and the premium theme frameworks include their own control panels to modify theme
settings. These other theme frameworks are covered later in this chapter. Theme control panel code
resides in the functions.php fi le.

For example, consider the popular Thematic theme framework. To keep things manageable and
distinct, the Thematic functions.php is simply a list of includes of other function fi les. This logically
breaks up and separates the different facets of the theme framework and keeps the fi les from becoming
unwieldy. This theme also includes a basic control panel to control some of the theme settings.

To create your own theme control panel, you have to register your theme control panel functions
with WordPress. In addition, you have to create the HTML form for your control panel within your
functions.php fi le. This is one of the reasons we like the way Thematic has broken up the fi les into
separate areas of concern; the mixing of PHP and HTML code never turns out pretty or readable. It
is best to keep this information separate and in maintainable fi le sizes.

Creating your own theme control panel is outside the scope of this book, but it is defi nitely a great
feature to have and most of the premium theme frameworks include this functionality. Having
a theme control panel helps your WordPress theme bridge that gap from blogging engine to full-
fl edged content management platform for the average user. However, the new Theme Customizer,
released in WordPress 3.4 and covered later in this chapter, may work for many sites as a simpler
theme control panel. For a coder, WordPress is easily extendible through the code and the vast
WordPress functionality, but for the average user, who is probably your client, avoiding code is
crucial making these control panels and theme customizers ideal for your end user.

Search.php

The search template fi le is really a misnomer. This template is actually the search engine result page
(SERP). The search form itself is called searchform.php and is covered in the next section. The
concept of a search engine result page is pretty self-explanatory. It is going to show the results of
what the visitor looked for, by default in reverse chronological order. Chapter 11 covers some of the
weaknesses with the built-in search functionality of WordPress and addresses some alternatives to
enhance the user experience.

This is all that the basic Twenty Eleven search template does. If there are results, this template
presents them to the browser, but if not, it shows a new search form.

You can do a couple of things to your search engine result page to improve on the default. First,
you do not want your results page to be a dead end if there are not any search results. Plugins are

c09.indd 240c09.indd 240 12/6/12 1:21 AM12/6/12 1:21 AM

Creating Your Own Theme: Additional Files ❘ 241

available to offer related searches or spelling variation searches based on what was initially entered.
This will make the search itself behave more like a traditional search engine.

Still, if you do not have any search results, offer up some alternative content that the visitor might
be interested in, similar to the way in which the default Twenty Eleven 404 template behaves. This
might be a good place for a tag cloud or a list of your most popular content. Plugins are available for
showcasing your most popular content or you could create a custom query, but you would have to
decide what your metrics are.

For some sites, the top content was essentially a known issue — that is, we decided what the top
content would be. In this case we created a special post category and made a new loop to show only
this category in the SERP page.

If you do have results, some people like to see the search terms highlighted in the search engine
results page. The Twenty Eleven theme uses the_excerpt() to display the content excerpt in the
results. This is where you will make some changes to highlight the search terms. The downside
of having your theme split up into many template fi les is that you have to chase the include()
and the get_template_part() functions to fi nd the correct fi le to edit. In the case of Twenty
Eleven, the get_template_part() is looking for the content template for the proper fi le type.
For the sake of brevity, you can chase this back to content.php for general post content. In the
content.php template, there is an “if” statement around line 35 checking if the content is being
displayed on a search engine results page or not. This is where the theme decides whether it’s
showing all of the content or just an excerpt, so you can modify the way excerpts are displayed.

Replace this line,

<?php the_excerpt(); ?>

with the following:

<?php
 $excerpt = get_the_excerpt();
 $keys = explode(" ",$s);
 $excerpt = preg_replace('/('.implode('|', $keys) .')/iu',
 '\0 ',$excerpt);
 echo $excerpt;
?>

Because the_excerpt() echoes the content directly to the rendering, you have to use the plugin API
function get_the_excerpt(), which returns a string instead. Run this string through the regular
expression replace to put span elements around all the search terms and then echo this out to the
rendering. In your CSS, you can add a nice rule to highlight these span elements to match your
theme.

Finally, if your visitors did not fi nd what they were looking for after reviewing the search results,
rather than forcing them to scroll back up to the top, you can provide a second search form at the
bottom to refi ne their search. After the results loop, add something like the following:

<h2>Not seeing what you're looking for? Try again</h2>
<?php get_search_form(); ?>

c09.indd 241c09.indd 241 12/6/12 1:21 AM12/6/12 1:21 AM

242 ❘ CHAPTER 9 THEME DEVELOPMENT

The Twenty Eleven theme has the search form already enabled for you. Chapter 12 discusses
improving the way search works through plugins and some alternatives.

SearchForm.php

The generic search form is pulled from the WordPress core template fi les and is pretty basic looking.
In cases where your theme needs a customized search input fi eld, create a new template named
searchform.php. This form can then be styled to match the rest of your theme. The search widget
automatically uses this template to include this form in your regular templates with the following code:

<?php get_search_form(); ?>

The basic Twenty Eleven search form looks like this:

<form method="get" id="searchform"
 action="<?php echo esc_url(home_url('/')); ?>">
 <label for="s" class="assistive-text">
 <?php _e('Search', 'twentyeleven'); ?>
 </label>
 <input type="text" class="field" name="s" id="s"
 placeholder="<?php esc_attr_e('Search', 'twentyeleven'); ?>" />
 <input type="submit" class="submit" name="submit"
 id="searchsubmit" value="<?php esc_attr_e('Search', 'twentyeleven'); ?>" />
</form>

Note that because this same form could be used in the unordered lists of the sidebar as well as
wherever else you may include it, the HTML markup may need to be adjusted to be generic.

Another option is for special-case search forms, often seen in the nameplates of sites, is to create
a traditional PHP include for the search form. Make sure the fi lename is not one of the reserved
fi lenames for the template engine, and then include it in the appropriate place in your other template:

<?php include($bloginfo['template_directory'].'includeThis.php'); ?>

Remember to use the bloginfo[] array to keep the theme portable. You can also use this method to
comply with the DRY principle when there are consistent elements across multiple pages but outside
of the header and footer templates. WordPress itself does an excellent job of enforcing DRY through
the variety of page templates, assuming you, as a developer, stick to the rules. But there are always
more ways to skin a cat and traditional PHP operations can help out here. This functionality is often
used to keep the template sizes manageable.

Other Files

Here are some other fi les that polish off your theme. For the Manage Themes Control Panel, you
will want to include a screenshot for easy visual recognition of your theme. Create an image fi le to
represent your theme that is 300px wide by 225px tall and save it as a PNG. GIF and JPG are also
accepted and preferred in that order. Traditionally, this image is an actual screenshot of your site
using your theme. The remainder of the information for each theme on the Manage Themes page
comes from your style.css header information.

c09.indd 242c09.indd 242 12/6/12 1:21 AM12/6/12 1:21 AM

Custom Page Templates ❘ 243

Many themes include several language fi les and are ready out of the box for localization. If you
intend to launch your site in multiple languages, pay attention to the special considerations involved.
Localization and internationalization are well outside the scope of this book. Just bear in mind that
the WordPress supports this functionality when you need it.

CUSTOM PAGE TEMPLATES

Occasionally, you will have a specifi c page that requires a unique layout, relative to the rest of
your website. This could be a contact page, or it could be that each product on a brochure website
has its own specifi c page. It could be that you are making a custom landing page for a marketing
campaign or a QR code. Maybe using a general page.php template is not going to meet the needs of
your site because each page has its own distinctive qualities. Possibly, you have widgets you would
like to display on certain pages and not others, although you could probably accomplish this with
a plugin like Widget Logic. Or perhaps you are integrating a third-party web application into your
WordPress site. This is where page templates step in.

You can assign page templates to a page using the Write panel in the Administration Control Panel.
WordPress will assign which page template to use when displaying your content following the
already established specifi city pattern. For example, if your page is assigned a page template, that
will be selected because a page template is the most specifi c option.
If the default page template is set, the traditional page.php template
discussed earlier will be used to render your content. Finally, if neither
of those templates is available, WordPress will use your index.php
template.

In Figure 9-4, you can see several page templates to choose from,
including the default page template, Twenty Eleven’s templates for a
showcase page and sidebar page, discussed later, and the two added as
examples, Boring and Fancy.

When to Use Custom Page Templates

Many reasons exist for having custom page templates in your site. Custom page templates are very
powerful tools to add to your arsenal, and when used effectively they can extend the breadth of your
site immensely. Custom page templates are yet another way to assign templates to specifi c pages.
Unlike previous examples, which relied on an inherent attribute of a page, such as the page slug or
ID, category, or tag, custom page templates can be assigned arbitrarily through the Write Panel to
any page in your site.

A simple example is to create page templates for unique product pages, where the sidebar of each
product page has unique data and links specifi c to that product. As with everything in WordPress,
there are many ways to achieve this functionality, but sometimes all that’s needed when creating
custom page templates is a simple, straightforward method. And often, simplest is best.

Another simple example is to create a custom page template that uses an iFrame HTML element to
include a third-party web application. Depending on the exact needs and aspirations of the site (not
to mention budget), this can be a quick and dirty way to integrate two sites into one. The caveats to

FIGURE 9-4: Selecting the

page template

c09.indd 243c09.indd 243 12/6/12 1:21 AM12/6/12 1:21 AM

244 ❘ CHAPTER 9 THEME DEVELOPMENT

this method are the same as you would usually fi nd when using iFrames, which are bookmarking
and competing look and feels. But admittedly, this method has been used before because sometimes
the quick and dirty method is all that you need.

More complex examples include integrating different web applications into your WordPress site.
For example, a page template could be used to create a custom order page that posts directly back
into your e-commerce package. This would be a nightmare to set up and maintain inside the
WordPress Control Panel, but when using custom page templates, it is all in the code, and you still
get the gooey goodness of WordPress to wrap it all in.

In real life, custom page templates are used for event calendaring and registration. On one
occasion, an expansive education class was built offering web applications for searching and
displaying courses as well as registering for attendance either in person or via the web. This
system had been in place for several years and was heavily used. The simplest way to integrate this
education registration system into WordPress client sites was to create custom page templates.

In essence, this extended the existing registration system with some REST web service commands.
Then a set of custom page templates was created that communicated with the web services but
displayed the contents locally inside the WordPress site wrapper, using the local style sheet.
Although setting up the page templates was daunting at fi rst, the benefi ts in the end were enormous:

 ➤ Continued use of the existing system that corporate staff was already knowledgeable about
and trained to use.

 ➤ Extended registration options to multiple sites, therefore increasing the potential audience.

 ➤ Even though the registrations were spread across multiple web properties, they were still
centralized into the one system.

 ➤ The education system matched the look and feel of the local website because it utilized the
local theme of the WordPress site.

How to Use Custom Page Templates

Creating the custom page templates themselves is really easy. The goal of the templates and making
the templates achieve the goals is what really complicates the matter.

To create a page template, copy an existing template that is similar to the new template you are going
to make; usually this is the page.php template. Name this new template fi le whatever you want and
keep it in your theme directory. However, in our development shops, we tend to follow a convention
that page templates are named t_templatename.php. That is, they are prefi xed with the t_ so it is
easy to distinguish between traditional template fi les and individual page templates, although the
name of this fi le really does not matter as long as you avoid the reserved fi lenames in the hierarchy.

To make your new template a page template, you must include a special comment section at the top
of the fi le:

<?php
/*
Template Name: Fancy Page Template
*/
?>

c09.indd 244c09.indd 244 12/6/12 1:21 AM12/6/12 1:21 AM

Custom Page Templates ❘ 245

This must be in the fi rst couple of lines of your fi le for WordPress to scan and register as a page
template. In practice, the only thing above this stanza is the source code control comment.

The name of your template can be anything you want. It should be meaningful, but not too long,
because WordPress will use this PHP comment to populate the drop-down box in the Control Panel.
Your page template is now registered with WordPress.

The remainder of your page template can be whatever you need to accomplish your page template
goals. You can, and most likely should, use the built-in WordPress functions such as get_header()
and get_footer() as well as the content gatherers. Basically you can do whatever you need to do
here; just remember you will have to sleep in the bed that you make.

For example, if you remove the dynamic WordPress sidebar generation and replace it with static
HTML, you have also removed all the functionality from the Control Panel to manage widgets on
this page template. It would be a better practice to register a new widget area on this page template
and continue to use the Control Panel to manage this content.

Keep in mind that page templates are not restricted to displaying page information. You could create
a page template that displays a traditional post loop or do something that is completely unrelated to
the WordPress content. Then just leave the page text editor blank, or use it to write instruction notes
to yourself.

Stock Twenty Eleven Page Templates

The Twenty Eleven theme comes standard with two page templates for use on your site. You will
look at those briefl y here, since you have them available.

The fi rst page template that comes with the Twenty Eleven theme is sidebar-page.php. This
template is pretty simple and straightforward. Basically, it adds a sidebar to your page template.
Pretty self-explanatory.

The second custom page template is more complicated. It is called showcase.php. The showcase
page template is designed to be a fancier index page for your WordPress site. It has a couple of
features built in.

First, it has a highlighted content area. This content area appears directly below the navigation
on Twenty Eleven. This content comes directly from the content of the page that you assigned this
template to.

Second, it has a showcase for posts. This is similar to what was done earlier in this chapter for the
slides and slideshows, but for Twenty Eleven, it uses actual post content. To feature posts, you need
to set them as sticky posts. The nice thing about this method is the features can be mixed format,
you can have images, text, or images and text in the featured area.

Once you have this page published, set it as your front page in the Reading Settings Control Panel
and you will have a fancy new index page.

Custom page templates are very powerful tools. Truly, if you cannot fi t your content into the
predefi ned template types, you always have this last trick up your sleeve to make a custom
page template and override everything. This is also a great way to add special non-WordPress
functionality to your website.

c09.indd 245c09.indd 245 12/6/12 1:21 AM12/6/12 1:21 AM

246 ❘ CHAPTER 9 THEME DEVELOPMENT

OTHER THEME ENHANCEMENTS

These are some additional enhancements that you can make to your theme. Most of the following
ends up in your functions fi le and not as individual fi les. These are enhancements to your theme that
enrich the site administrator’s CMS capabilities.

Menu Management

As mentioned before, most WordPress sites that are being used as CMS capacity have a mixed
bag of pages and posts. The most diffi cult part of the hybrid pages and posts layout is creating a
meaningful navigation. Your site’s global navigation is a very important aspect of your site if you
intend to have any stickiness with your visitors. Visitors should be able to explore your content
organically and experimentally through related posts and pages, but there should also be a strategy
to your content organization and this is the function of your global navigation. On occasion, we
have lucked out on the structure of a site and have been able to create two tiers of navigation, one
for the page content and one for the post content. Before WordPress 3.0, the two content types
essentially needed to be intertwined and the navigation had to be hand-coded using the
wp_list_pages() functions with many different parameters to get the menus you wanted.
This was all coded in the templates and not very fl exible for the site administrator.

However, those days are gone. With WordPress 3.0, a new Menu Management system has been
introduced. This menu management gives all the control to the site administrator. As a theme
developer, you just have to set it up for your theme presentation.

First, in your functions.php template, you must enable the menu feature. This is done with:

if (function_exists('add_theme_support')) {
 add_theme_support('menus');
}

The next step is to register the menus for your theme. Basically this means assigning named
locations for each menu to earmark the HTML real estate for the menu. You will use the
register_nav_menu() function for this. This function takes two parameters. The fi rst one is
a nickname or handle that you will use in the template fi les. The second parameter is a friendly
human-readable name that is used in the WordPress Control Panel. For example, the following
will create a single global navigation menu for use in your theme:

register_nav_menu('primary', 'Global navigation menu');

 You can actually have as many menu locations in your theme as you want or need. Just feed the
register_nav_menu() function an array of locations, like so:

register_nav_menus(array(
'primary' => __('Primary Navigation', 'twentyten'),
'supernav' => __('Super Navigation', 'twentyten'),
));

This will notify WordPress that you have menu locations available and identifi ed, but you also need
to assign their position in the template fi les. Usually, because of the way websites are designed, this

c09.indd 246c09.indd 246 12/6/12 1:21 AM12/6/12 1:21 AM

Other Theme Enhancements ❘ 247

occurs in your header.php template. To place the desired menu in your template fi le use the
wp_nav_menu() function like so:

<?php wp_nav_menu(array('theme_location' => 'primary')); ?>

This function can take many parameters, passed in as an array, to control the HTML styling,
but the important parameter is to identify which menu you want placed at this location. In the
preceding example, the real estate is allocated for the menu nicknamed primary.

Finally, to glue this all together, your site administrator can use the Menus Control Panel to manage
the menu. Notice you are identifying a menu location, and then assigning that location to an actual
position in the HTML hierarchy. This is all at the code level. In turn, the site administrator assigns
content to these named locations through the Control Panel. So while they all must be set up
together so that they work together, they are actually disconnected. Assigning meaningful names to
the menu locations is important for the Control Panel aspect of menu management, but how the site
administrator uses that menu may be different than you intend.

What is meant by “disconnected”? Let’s go back in time to how WordPress used to build menus
before the new menu system. This process involved using the wp_list_pages() function with many
parameters to hand-craft the exact menu you needed. In fact, the fi rst edition of this book devoted
many pages to reviewing this topic. Creating the menus programmatically in the template fi le
worked because it was directly tied to actual content of the site and the hierarchy of pages.

However, it was not perfect. You had to use tricks such as building a blank page to show up in the
automated navigation menu, and then use the Page Links To plugin by Mark Jaquith to redirect
that page to category or archive templates. In addition, the PageMash plugin was recommended to
manage the page hierarchy and page order for the wp_list_pages() function. This tried and true
method is frequently employed for many sites. It works because it is programmatic, meaning it is
predictable. It works because it is directly tied to content. It sometimes does not work when the
content gets a major change.

Sometimes, a change in the content means the wp_list_pages() parameters need to be adjusted.
With this method, the changes have to be made at the code level, and the power is taken away
from the site administrator. Whether this is good or bad is a choice you have to make based on the
convenience and needs of your site.

The predictability of the new menu management system is another problem. With the menu system,
your site navigation is arbitrary. It’s not directly tied to your content. You can automatically add
top-level pages to a menu, but you cannot automatically add the child pages. In addition, the page
hierarchy isn’t refl ected in the menu system. You have to manually manage the menu above and
beyond the management of content. One possible trap is that when you delete a page from your site,
the menu item remains.

This disconnect can be both a pro and a con. On the one hand, the site administrator really has
complete control over the menu content. He can hand-craft the menu to meet his needs. However,
it is important for your site administrator to understand that he has to manage the content and
the menu. There can be confusion when some aspects of the site navigation are programmatically
created in the theme templates, but the menu is handmade.

c09.indd 247c09.indd 247 12/6/12 1:21 AM12/6/12 1:21 AM

248 ❘ CHAPTER 9 THEME DEVELOPMENT

For example, imagine you have built a new theme for a client that has multiple product pages.
These are special pages to highlight individual products with their specifi c information and details.
To further enhance the user experience, and perhaps cross-sell some product, you have built a
custom page template for the products pages that has a built-in related products section at the
bottom. This related products section is generated by code in the imaginary t_product_page.php
custom page template. The challenge is that when a site administrator adds a new product page,
it will show up automatically in this related product page code on some other sites, but will not
show up automatically in the menu. The site administrator will have to manually edit the menu to
add this page.

This is not a devastating issue; it’s just disconnected and an extra step. The challenge is in
empowering the site administrator and asking him or her to manually confi gure things, versus
simply adding code to have things happen automatically.

Widget Areas

Widget areas work very much the same way as menus. In your functions.php fi le, you identify and
name different areas for different parts of the site. These are often thought of as sidebars but can be
so much more. Do not restrict yourself to thinking widget areas only belong in the sidebars of your
site. Many themes, including Twenty Eleven, are expanding the number and location of widget areas
to include the nameplate or header area, the footer, and even the middle of the loop. You have seen
themes that have hundreds of widget areas.

The nice thing about widget areas is their fl exibility. The number of widgets that can be placed into
a widget area is immense. Having multiple widget areas empowers the site administrator to control
content in areas of the site that are really outside the primary content areas of the site.

As previously mentioned, setting up widget areas is very similar to setting up menus. In your
functions.php fi le, you must identify and name your locations. Because widget areas have more
fl exible and varied content than menus, which are pretty much unordered lists, you generally pass
some HTML wrapper information for use when rendering the widgets. Also, because widget
areas have evolved from the traditional sidebar use, the function to register them is still named
register_sidebar(), but again, don’t let this pigeonhole them. Here is a widget area code snippet
from Twenty Eleven:

register_sidebar(array(
 'name' => __('Main Sidebar', 'twentyeleven'),
 'id' => 'sidebar-1',
 'before_widget' => '<aside id="%1$s" class="widget %2$s">',
 'after_widget' => "</aside>",
 'before_title' => '<h3 class="widget-title">',
 'after_title' => '</h3>',
));

Similar to menus, you pass the function a friendly name for use in the Control Panels and an
identifi er for use in the theme templates. Beyond that, the additional parameters are for styling
the widget consistently. In this example, Twenty Eleven is using HTML5 aside elements to wrap
each widget and widget titles in h3 tags. This code notifi es WordPress that there is a widget area
available for content.

c09.indd 248c09.indd 248 12/6/12 1:21 AM12/6/12 1:21 AM

Other Theme Enhancements ❘ 249

The next step is to assign the HTML real estate position to this widget area. For this example,
you will look at sidebar.php in Twenty Eleven, but again, widget areas can be anywhere in your
template. Here’s the code:

<?php if (! dynamic_sidebar('sidebar-1')) : ?>

 <aside id="archives" class="widget">

 <h3 class="widget-title"><?php _e('Archives', 'twentyeleven'); ?></h3>

 <?php wp_get_archives(array('type' => 'monthly')); ?>

 </aside>

 <aside id="meta" class="widget">
 <h3 class="widget-title"><?php _e('Meta', 'twentyeleven'); ?></h3>

 <?php wp_register(); ?>
 <?php wp_loginout(); ?>
 <?php wp_meta(); ?>

 </aside>

<?php endif; // end sidebar widget area ?>

A couple of things are going on in this code snippet. First and foremost, the fi rst line is looking to
see if the widget area named sidebar-1 has content assigned in the Control Panel, and if it does, it
will display it. This is one of the big benefi ts of widget areas: if they do not have content, they do not
display unless you follow the paradigm outlined in the preceding code.

In this case, if the widget area does not have widgets assigned to it, then the default content will
display. In the preceding example, if no dynamic content was set up in the Control Panel, this
widget area will show the archives and the meta widgets automatically. How you set this up depends
on your needs. You can just as easily provide widget areas with no default content to expand the
possibilities of your theme.

Post Formats

This is simply a feature fl ag that you can turn on or off in your functions.php fi le. If your theme
intends to use the built-in post formats, or a subset of them, you can enable them.

Post formats are essentially a way to customize the display of certain types of posts. This is most
commonly seen when you are using WordPress for blogging or archiving a journal. The different
post formats can be used to pull different loop HTML rendering as you saw earlier in this chapter.
This allows you to present quotes or links differently than full posts.

WordPress currently supports ten post formats for varying content. You can enable any or all of
these formats depending on the goals of your theme. The standard format is for traditional posts
and is enabled automatically. This is the format used in WordPress forever; it just now has a name
assigned to it.

c09.indd 249c09.indd 249 12/6/12 1:21 AM12/6/12 1:21 AM

250 ❘ CHAPTER 9 THEME DEVELOPMENT

In addition, there are nine new formats as of WordPress 3.1. Here they are, with the recommended
styling, although using the fl exibility of WordPress, you can style these to fi t your needs:

 ➤ Aside — This is similar to a quick note. It is usually presented without the post title.

 ➤ Audio — Obviously, this format is for an audio fi le, perhaps a podcast or a band releasing a
single.

 ➤ Chat — This format is usually a chat transcript. This is usually styled using the pre HTML
element to keep the line breaks.

 ➤ Gallery — This is a gallery of image media attachments. The actual post content will
typically contain a gallery shortcode. This format is for styling the gallery.

 ➤ Image — This post format is for a single image. The single image can be embedded in the
post content, or a URL in the post content will pull that image to your site.

 ➤ Link — This format is for a link to another URL. Generally, these are presented as simply
the link, without the title. This format is often used for creating your own bookmark site or
reminders about URLs that interested you.

 ➤ Quote — Another self-explanatory one — this format is for quotes. This format is used to
archive quotes that have some special meaning to you. You can present this format without
the title or fl ip it around and use the title information as the attribution to the quote.

 ➤ Status — Think of this format as Twitter or Facebook updates. Typically presented without
a title. You can use this format to make your own Twitter clone.

 ➤ Video — Similar to image and audio, this format is for presenting a single video to your
visitors. The video can be embedded in the content or as an external URL.

To enable post formats for your theme, simply select which formats you intend to use and pass them
as a parameter array. For example, the Twenty Eleven theme is supporting a subset of the previous
formats:

add_theme_support('post-formats', array('aside', 'link', 'gallery',
 'status', 'quote', 'image'));

Remember that the standard post format for traditional post content is always enabled. Post formats
can tailor your theme to specifi c niche uses or broaden your theme to present different content types
in unique and customized ways.

Theme Settings

Many of the theme frameworks offer a special Theme Settings Control Panel for customizing the
theme framework. This is a coded solution that comes from the theme developer but creates a new
Control Panel with whatever settings the theme developer has opted to include. This is yet another
feature that is a balance of empowering the site administrator as opposed to handling aspects in the
theme template code.

Creating your own Theme Settings Control Panel is a pretty complex endeavor that is outside the
scope of this book. Each theme is different, and it’s the developer’s goals that determine which
features or aspects of your theme are confi gurable.

c09.indd 250c09.indd 250 12/6/12 1:21 AM12/6/12 1:21 AM

Theme Hierarchy and Child Themes ❘ 251

To create a Theme Settings Control Panel, you fi rst have to build the control panel code and forms
and register them with WordPress. You then have to take the confi gurable options and use them in
your template fi les. The control you give to your site administrator can be very powerful, but it does
make developing your templates a little trickier.

For more information about creating your own Theme Settings Control Panel, check out the
WordPress Codex and other theme frameworks; there are also many good tutorials online.

Theme Customizer

Some of the functionality of Theme Control Panel has been moved into the new Theme Customizer,
which was introduced in WordPress 3.4.

This is a new Control Panel for customizing the theme. The really neat thing is that it can show the
site administrator a live preview of the site while he is customizing it. This is truly the biggest benefi t
of this component. This real-time live preview allows the site administrator to experiment with the
site and see how it would look without affecting the live production site until he is done. In the past,
this process involved making a change in a Theme Settings Control Panel, discussed previously, in
the code, or in other customizable places, and publishing those changes to the live site. Then the
site administrator had to browse to the live site to see the outcome. At the same time, any visitors
browsing the site saw the in-process design changes. The change may or may not have been what
the site administrator intended, or worse, may have broken some display aspect. The live preview
presents this whole process while allowing great control.

The Twenty Eleven theme is the fi rst theme that is using this new set of functions to any great extent,
although it is expected that many more themes will be using it by the time this book is published.

Basically, the Theme Customizer uses the WordPress settings API to store confi gurable design
information. Then using specially crafted functions in the functions.php fi le, WordPress applies
the changes to the HTML.

In the Twenty Eleven function for changing the header color, the functions.php fi le injects a new
CSS stanza into the HTML head that overrides the style sheet. In practice, this is not really optimal
code for a high-traffi c site; however, this is yet another example of trading optimization for site
administrator confi gurability.

THEME HIERARCHY AND CHILD THEMES

So far in this chapter, you have looked through the template fi les that make up a complete theme,
focusing on the stock Twenty Eleven theme. You even considered renaming it and making your
custom theme in that new directory using the Twenty Eleven theme as a starter theme. This is a
good way to get started with theme creation as it helps you dive into the internals of how a theme
works. And, in the real world, this is how many development teams work today. This method works
well because you know exactly where your template fi les and CSS fi les are that need to be edited.
The whole theme is self-contained, which minimizes workfl ow and deployment efforts — not that
it’s perfect, but it is very solid.

However, with the release of WordPress 2.7, child themes became a functional reality. While you
could implement child themes prior to WordPress 2.7, it was not until template fi le inheritance

c09.indd 251c09.indd 251 12/6/12 1:21 AM12/6/12 1:21 AM

252 ❘ CHAPTER 9 THEME DEVELOPMENT

was included that child themes became a viable development option. Child themes let you take an
existing theme or theme framework and use the best parts of it, and then extend and modify it,
license permitting, to meet your own theme’s needs while maintaining future updates to the parent
theme. After you have the basics of theme development down, it is highly recommend that you pick
a theme framework you are comfortable with (a few are mentioned in the next section) and create
child themes. Child themes are the future of theme development for WordPress.

This concept is pretty revolutionary for several reasons. First, it certainly opens the door for theme
frameworks. Starting with a solid foundation, you can now make countless variations on the theme
simply through inheritance. Theme frameworks tend to be very plain, and intentionally so, but by
using child themes, you can inherit all the CSS semantic hooks and microformat gooey centers and
build your own candy shell around it, basically taking the best parts and making a new creation.

Second, updates to the parent theme or theme framework will not overwrite your customizations.
Previously, when you made modifi cations to your copy of the theme, you had to keep track of the
changes you made so that you could reapply them when the theme was upgraded. This can be
somewhat automated via a source code management solution, but it is arduous at best, when it
works. And there is always the day when you forget to make a modifi cation to the updated fi les.

Third, child themes led the way for auto-updating themes in the Theme Manager. Occasionally
theme templates are vulnerable to security exploits such as cross-site scripting. Using a properly
inherited child theme means the parent theme can auto-update to address security issues while not
affecting your child theme. This creates a more secure implementation for your site.

There are a couple of caveats here. The functionality that keeps your child theme customizations
unaffected works both ways. If you override a particular template fi le with your own
customizations, any enhancements to the parent template fi le of the same name will not cascade to
your unique fi le. In practice, this could create a false sense of security, where you may have copied
a poorly coded template fi le to modify, and then changes were made to the parent version but your
fi le is unaffected and still vulnerable. That is, because you are carrying forward the vulnerability
in your extended code, you continue to override any repaired code. This would not only apply to
security amendments but would also apply to any feature enhancements. That is, child themes do
not totally remove you from the code management process.

In addition, there is a little bit of CSS overhead here. Generally, a child theme builds upon the CSS
of the parent theme. And, in truth, that is exactly how CSS is designed to work, hence the word
cascading in the name. So, for this to work in child themes, the child theme has to include the CSS
from the parent theme, even the rules that get overridden in the child theme. That means that the
byte weight of the CSS in your child theme may be quite a bit larger than what you actually use in
the browser, but you have to transfer it all anyway.

That said, child themes are a fantastic feature of WordPress, and we recommend using this
methodology when the situation warrants it. Certainly maintaining a pristine theme framework and
then extending that theme to individual sites adds to the benefi ts of a common theme vernacular of
CSS and functions, as well as the other benefi ts mentioned previously. Again, using child themes is
the future for WordPress theme development and is the best practices recommendation.

Take a look at how child themes actually operate and what is required in making your fi rst child
theme. The fi rst thing you need to do is fi nd the theme you are using as the parent. Your parent

c09.indd 252c09.indd 252 12/6/12 1:21 AM12/6/12 1:21 AM

Theme Hierarchy and Child Themes ❘ 253

theme does not have to be labeled a theme framework. You can extend any theme as long as it meets
the following conditions:

 ➤ The licensing permits you to extend or modify the theme.

 ➤ The parent theme is not a child theme itself.

In this example, you will continue to build on the stock Twenty Eleven theme, but you could use
any theme or theme framework as the parent. As alluded to earlier in the chapter, to make your
custom theme a child theme of another theme, you must add a line to the header information of
your style.css fi le. This line informs WordPress of the location of the parent theme. Therefore, the
variable in the comment should be the folder name of the theme. Although it depends on the server, is
best to be case-sensitive when naming your theme. In this instance, you are adding the following line:

Template: twentyeleven

To illustrate this, the entire header comment block from the sample child theme reads as follows:

/*
Theme Name: A Twenty Eleven Child Theme
Theme URI: mirmillo.com
Description: A sample child theme
Author: David Damstra
Author URI: mirmillo.com
Template: twentyeleven
Version: 1.0
*/

As discussed previously, having the style.css fi le with the properly formatted header information
in your uniquely named folder registers your theme with WordPress.

The next step is to import the CSS from the parent theme so that your custom theme has base rules
to work with:

/* import the base styles */
@import url('../twentyeleven/style.css');

At this point, you can activate your theme in the WordPress appearance Control Panel. You have a
fully functional child theme of the Twenty Eleven theme. It will look exactly like the Twenty Eleven
theme because it is, in essence, a practical copy of the parent theme. The remainder of your style
sheet operates like traditional CSS where you can override previous rules through the CSS rules
of specifi city and precedence, including the order in which they are listed — because your custom
styles appear later, they will take precedence.

Again, working with CSS is outside the scope of this book, so let’s, go ahead and extend the child
theme a little bit. Although you can make these same changes with the Theme Customizer presented
earlier, for the sake of this example make the changes in CSS. Update the child theme with a nice pink
background and change the base font. Here’s what the complete style.css fi le might look like:

/*
Theme Name: A Twenty Eleven Child Theme
Theme URI: mirmillo.com

c09.indd 253c09.indd 253 12/6/12 1:21 AM12/6/12 1:21 AM

http://mirmillo.com
http://mirmillo.com
http://mirmillo.com

254 ❘ CHAPTER 9 THEME DEVELOPMENT

Description: A sample child theme
Author: David Damstra
Author URI: mirmillo.com
Template: twentyeleven
Version: 1.0
*/

/* import the base styles */
@import url('../twentyeleven/style.css');

body {
 background: #E0A3BD;
 color: #333;
 font: 100%/1.5 calibri, arial, verdana, sans-serif;
}

From here on out your browser developer tool is your best friend. Use the inspector to see the
current style rules applied to various elements and make the appropriate changes in your child
theme’s CSS fi le. Again, remember to follow the precedence and specifi city rules of CSS.

Your child theme can be as simple or complex as you make it. You can create a completely unique
theme by simply editing the style sheet, as you have done previously. Or your child theme can turn
into a completely new theme with all new templates, although this most likely defeats the purpose of
using a child at all.

Here is how it works. When WordPress makes a decision on which template fi le to use, fi rst it
scans your child theme directory for that fi le. If that fi le does not exist, the parent theme directory
is scanned. WordPress will prefer your template fi les over those of the parent theme, which means
you can override the functionality of specifi c templates while maintaining the core of the parent
theme. Or, your child theme could introduce custom page templates, but the foundation templates
are pulled from the parent. There is a wide scope of opportunities here, although keep in mind the
previously mentioned limitations.

The easiest way to accomplish this is to copy the template fi le you want to modify from the parent
theme directory into your child theme directory and then modify as needed.

For example, the author template in the Twenty Eleven theme is perfectly functional, but suppose
you want to change the size of the author image in this template. Again, this is an intentionally
simple example and there are many ways to copy this.

First, copy the author.php template from the Twenty Eleven theme into your child theme directory.
Second, edit your child copy to change the avatar image size around line 46 of the code. It might
read something like this:

<?php echo get_avatar(get_the_author_meta('user_email'),
 apply_filters('twentyeleven_author_bio_avatar_size', 120)); ?>

In this example, you doubled the size of the image from 60 pixels wide to 120 pixels wide. You can
see an example of what this looks like in Figure 9-5.

c09.indd 254c09.indd 254 12/6/12 1:21 AM12/6/12 1:21 AM

http://mirmillo.com

Theme Hierarchy and Child Themes ❘ 255

You can further extend the child theme with your own functions.php fi le. WordPress
automatically includes the parent theme’s functions, but in addition, it also includes your child
theme functions. You do have to be conscientious about function naming. Be very careful not to
create functions in your own theme that have the same name as a parent theme function. If you need
to override functionality, the authors’ advice is to make a new function in your own theme with a
new name to avoid name resolution confl icts and adjust the template fi les as necessary to call your
function instead.

In addition, theme frameworks have advanced signifi cantly and many include multitudes of custom
hook locations and fi lters for you to capitalize on. Using these custom hooks and fi lters, you can
actually use your child theme’s functions.php to inject and modify the parent theme’s HTML
without making a second copy of the template fi les. This is a process that builds on the topics
covered in Chapter 8. This is a much more complex way to build child themes but provides you the
most safety because you are able to update the parent theme in the future as your child theme uses
the hooks of the parent to amend and change the theme to make it your own.

As you can see, child themes are yet another powerful tool in the WordPress theme arsenal. You
can quickly get a theme up and running using an established theme as a base, and then modify
and extend only what is required to create your own theme, all the while future proofi ng the
upgradeability of your foundation theme.

This really is a game changing feature once you grasp it. It’s not a simple concept, especially
when you use a framework with custom hooks and fi lters. Even if your design team hand-codes

FIGURE 9-5: Child themes make it easy to apply styles to specifi c pages.

c09.indd 255c09.indd 255 12/6/12 1:21 AM12/6/12 1:21 AM

256 ❘ CHAPTER 9 THEME DEVELOPMENT

each theme from scratch, having a foundation to start from offers a number of benefi ts, including
increasing effi ciencies because commonly implemented features are already being implemented
consistently, and they also have the familiar CSS and markup vocabulary that your team is
intimately familiar with. Regardless of whether your parent theme is one of the popular theme
frameworks or something you have developed in-house, the benefi ts are quite tangible.

PREMIUM THEMES AND OTHER THEME FRAMEWORKS

Thus far in this chapter, you have explored the Twenty Eleven theme and used it in most of the
examples. But certainly, it is not the only theme or theme framework out there and may not be the
best match for you or your development team.

Many of these other themes you will look at briefl y include another layer of abstraction in them or a
fl urry of functions in the functions.php fi le. Generally, this abstraction brings the ability to modify
the theme into the WordPress Control Panel. This may be ideal for certain clients who are not PHP-
savvy and want that control delegated to the site administrator rather than the developers.

The best way to make a choice here is to try each theme out and kick the tires. Find a theme or theme
framework that fi ts your coding style and needs and then run with it. Remember that you can make
child themes or modify themes to meet your needs (license permitting, of course) from basically
any theme out there, but with the new child theme functionality in WordPress 2.7, there has been
a growth spurt in theme frameworks. You take a cursory look at some of the more popular theme
frameworks (at the time of this writing) here. Many are out there, so be sure to look around.

Please keep in mind that various terms are thrown about with regard to themes. Magazine themes
and premium themes mean different things to different people. Sometimes premium means the
theme costs money; other times it means it includes an administration control panel. Some themes
that are available for a fee are called commercial themes. A theme framework is typically developed
to be built upon. Although they may stand by themselves, they are intentionally written for
extension. Starter themes are meant to be forked and edited in place. Your needs may vary with
every project, and certainly you need to fi nd a theme that speaks to you.

The following is just a sampling of some more popular themes that we have used in the past. There
are many more to choose from and we are not endorsing any one over another.

Bones Theme

Bones is a starter theme by Eddie Machado. The Bones theme is built on top of HTML5 boilerplate
as a foundation, meaning that it is pretty forward thinking. We like Eddie’s philosophy that child
themes and theme frameworks are great, but sometimes they make things more complicated than
they need to be. The simplicity of taking a starter theme and making a one-off project theme for a
site appeals to many seasoned developers and this is the goal of the Bones theme.

In addition to HTML5, the Bones theme is a responsive base using media queries and a mobile-fi rst
mentality. Responsive web design is covered a little more in Chapter 12, but know that if you are
making sites that you expect to be viewed on smartphones, having responsive views from the get-go
helps. Bones also includes LESS and Sass CSS functionality for advanced developers. Check out the
Bones theme at http://themble.com/bones.

c09.indd 256c09.indd 256 12/6/12 1:21 AM12/6/12 1:21 AM

http://themble.com/bones

Premium Themes and Other Theme Frameworks ❘ 257

Carrington Theme

Carrington is a theme framework by Alex King’s Crowd Favorite. Carrington is designed for
child themes and is built to be very modular, meaning you add in what functionality you need.
Carrington does this by abstracting code into small components. This allows code reusability and
keeps things organized. At fi rst glance, Carrington can seem complicated, but once you digest the
processes involved, it makes sense.

Crowd Favorite also has some other interesting WordPress projects, including RAMP, which was
mentioned in Chapter 3, and the Carrington Build theme, which is a drag-and-drop pay layout
generator. Learn more about the Carrington theme at http://carringtontheme.com.

Genesis Theme

The Genesis theme framework by Brian Gardner’s StudioPress is one of the most, if not the most,
popular theme frameworks around. The Genesis theme framework is designed exclusively for child
themes, and StudioPress even sells many variations. To this end, the Genesis framework has many
additional hooks and fi lters for customizing your child theme to make it unique.

The Genesis theme framework is an evolution of the Revolution theme. The Revolution theme was
a pioneer in WordPress themes and really raised the bar to change theme development standards.
Revolution was one of the fi rst themes to embrace the magazine theme style that helped WordPress
transcend the blog stereotype and become a viable CMS solution. Magazine-style themes made
WordPress look less bloggy and more like a traditional website. In addition, the Revolution theme
was one of the early commercial themes. The Revolution theme has since been retired and is no longer
available. However StudioPress has taken its experience and created Genesis and many child themes.

You can fi nd the Genesis Theme online at http://studiopress.com.

Hybrid Core Theme

The Hybrid theme by Justin Tadlock is free, but charges a club membership fee for access to the theme
documentation, tutorials, and support forums. This theme includes a nice control panel to toggle
various features and CSS hooks on and off. The Hybrid theme has several ready-made child themes
available.

This theme has rich CSS hooks throughout the posts and body tags. It also includes numerous widget-
ready areas and many custom page templates in the stock installation. These custom page templates
cover a variety of use cases and really add to the theme, if you know how to use them. The Hybrid
Core theme is modular with many features and extensions that can be enabled if you need them.

You can fi nd more information about the Hybrid Core theme at http://themehybrid.com/.

Roots

The Roots theme, developed by Ben Word, is another starter theme. Like Bones, this theme is
based on HTML5 boilerplate and also Twitter Bootstrap. Because this theme is based on Twitter
Bootstrap, it is also a responsive theme for mobile devices.

c09.indd 257c09.indd 257 12/6/12 1:21 AM12/6/12 1:21 AM

http://carringtontheme.com
http://studiopress.com
http://themehybrid.com/

258 ❘ CHAPTER 9 THEME DEVELOPMENT

One of the interesting features of the Roots theme is the included .htaccess fi le for use on Apache
web servers. The .htaccess cleans up URLs throughout your site by redirecting some of the
WordPress recognizable paths for images, CSS, JavaScript, and plugins to be more traditional
URL paths. In addition, the .htaccess rewrites the search URLs to be more human-readable and
makes most asset URLs root relative. All in all, this theme does a good job of further cleaning up
WordPress URLs and making them more semantic.

The Roots theme is available online at http://www.rootstheme.com/.

StartBox Theme

StartBox is a theme framework developed by Brian Richards for building child themes. Like the
Hybrid theme, the framework itself is free, but there is a club membership fee for access to the child
themes, tutorials, and support.

The StartBox theme includes an extendable Theme Options Control Panel and many built-in
shortcodes for commonly requested tasks such as call-to-action buttons and social media links. An
interesting feature of the StartBox theme is the sidebar manager, which allows the site administrator
to create widget areas through the Control Panel. The StartBox theme, like many of these other
themes, has the venerable Sandbox theme as an ancestor, meaning it has many CSS hooks built
in throughout the HTML.

Learn more about the StartBox theme online at http://wpstartbox.com/.

Thematic Theme

Thematic is a theme framework developed by Ian Stewart. The Thematic theme is free with a decent
breadth of existing child themes available. Child themes are available both free and commercial.
Thematic also includes a minimal administration control panel to modify limited information.

Two features really stand out. First, this theme’s ancestry includes the Sandbox theme. The rich
semantic CSS hooks that are found in Sandbox have been brought into Thematic and extended.
Second, this theme includes 13 widget-ready areas. Thematic includes many search engine
optimization and layout features. You can fi nd more information about the Thematic theme at
http://themeshaper.com/thematic/.

SUMMARY

In this chapter, you covered how to use themes to organize, structure, and present your content. Your
theme is the face of your site, and no matter how good your content is, this presentation is what
really seals the deal on the user experience. A theme that looks amateurish can hurt the credibility of
your site, whereas a sharp, professional theme can enhance the whole experience.

In the next chapter, you will look at taking external content sources and incorporating them into
your WordPress site to further develop the quality of your content and the user experience.

c09.indd 258c09.indd 258 12/6/12 1:21 AM12/6/12 1:21 AM

http://www.rootstheme.com/
http://wpstartbox.com/
http://themeshaper.com/thematic/

Multisite

WHAT’S IN THIS CHAPTER?

 ➤ Understanding WordPress Multisite

 ➤ Diff erences between Multisite and standard WordPress

 ➤ Installing and confi guring a Multisite network

 ➤ Coding for Multisite

 ➤ Multisite database schema

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

The wrox.com code downloads for this chapter are found at www.wrox.com/remtitle
.cgi?isbn=9781118442272 on the Download Code tab. The code is in the Chapter 10 down-
load fi le and individually named according to the code fi le names throughout the chapter.

WordPress Multisite is a powerful core feature in WordPress. When enabled, Multisite allows
you to create multiple websites with a single install of WordPress. This makes it easy to rapidly
launch new WordPress websites. A Multisite network can even allow open user and site regis-
tration, enabling anyone to create a new site in your network. The largest WordPress Multisite
network is WordPress.com, which is a great example of what Multisite can be.

WHAT IS MULTISITE?

Prior to WordPress 3.0, Multisite was called WordPress MU (or multi-user) and was a separate
software package that needed to be downloaded and installed. WordPress 3.0 merged MU into
the core of WordPress, and WordPress Multisite was born.

Multisite is not enabled by default, so it’s important to understand the differences before
enabling Multisite in your WordPress installation.

10

c10.indd 259c10.indd 259 12/6/12 1:32 AM12/6/12 1:32 AM

http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://www.wrox.com/remtitle.cgi?isbn=9781118442272
http://WROX.COM
http://wrox.com
http://WordPress.com

260 ❘ CHAPTER 10 MULTISITE

Multisite Terminology

It’s important to understand the terminology used throughout this chapter when working with
WordPress Multisite. Two important terms in Multisite are network and site. A network is the
entire Multisite installation, or the network. A site is a single site inside the network. Therefore,
WordPress Multisite is a network of sites.

Another important term is Blog ID. The Blog ID is a unique ID assigned to every new site created
in Multisite. Many of the functions and code examples will reference the Blog ID. Sometimes this is
also referred to as the site ID. Remember that WordPress was originally built as a blogging platform
but has evolved over the years into a full-fl edged content management system. Therefore many of the
functions and code in WordPress still reference items as “blogs” when really they are sites.

NOTE Don’t let the term “blog” confuse you. A blog in WordPress Multisite is
actually a site in the network. A Blog ID, as referred to by many functions and
code examples, is the unique ID of the site in the network.

Diff erences

When you install standard WordPress, you are installing a single website to run on WordPress.
WordPress Multisite enables you to run an unlimited number of websites with a single install
of WordPress. When enabling Multisite, you need to determine how sites will be viewed in
WordPress, either using subdomains or subdirectories. The following is an example of both:

Subdirectory Example

 ➤ http://example.com/site1

 ➤ http://example.com/site2

Subdomain Example

 ➤ http://site1.example.com/

 ➤ http://site2.example.com/

As you can see, this is a pretty big decision and one that should be carefully considered. With a plugin,
there are ways to map top-level domains to any site in your network (i.e., http://mywebsite.com),
which is covered later on in this chapter.

Themes and plugins are also treated differently in Multisite. Individual site administrators can
enable themes and plugins on their site, but they can’t install them.

WordPress Multisite also introduces a new user role: Super Admin. Super Admin users have access
to the Network Admin section of Multisite. This section is where all Multisite confi guration
occurs. Super Admins also have full access to every site in the Multisite network, whereas normal
Administrators only have access to the site they are an administrator of.

c10.indd 260c10.indd 260 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com/site1
http://example.com/site2
http://site1.example.com/
http://site2.example.com/
http://mywebsite.com

What Is Multisite? ❘ 261

Advantages of Multisite

WordPress Multisite has a number of advantages over standard WordPress. The biggest advantage
of Multisite is that you have a single install of WordPress to administer. This makes updates for
WordPress, themes, and plugins much easier. If you have a WordPress Multisite network of 50 sites,
and a plugin update is released, you need to update that plugin only once and it will affect all sites in
your network. If each of the 50 sites were a separate install of WordPress, you would have to update
that plugin 50 separate times.

Aggregating content is also another big advantage. It is very easy to share content between your sites
in a Multisite network. For example, if you have 50 sites in your network, you could easily aggregate
posts from every site to your main blog to showcase your network of sites and content.

The biggest advantage to using Multisite is the speed in which you can launch new sites. With just a
few clicks you can create new sites in your network. These sites can share themes, plugins, and even
users.

Enabling Multisite

Enabling the Multisite feature of WordPress is a pretty straightforward process. The fi rst step is to
add the following line of code to your wp-config.php fi le:

define('WP_ALLOW_MULTISITE', true);

This line of code should be added just above the comment that reads:

/* That's all, stop editing! Happy blogging. */.

Save your wp-config.php fi le and upload to your server. Now log in to the admin dashboard
of WordPress and you’ll notice a new submenu item for Tools ➪ Network Setup, as shown in
Figure 10-1.

The Network Setup screen will vary depending on your current WordPress setup.
If your setup allows it, you will choose either Subdomains or Subdirectories for
your Multisite setup. You also need to verify that the Server Address, Network
Title, and Admin E-mail Address values are correct. These are fi lled in automati-
cally by WordPress, but you can modify the values if needed. After you have
confi rmed that the settings are what you want, click the Install button to install
Multisite in WordPress.

The fi nal step to enabling Multisite will be presented on the screen; it’s a series
of manual changes you need to make to WordPress. The fi rst step is to cre-
ate a blogs.dir directory in your /wp-content directory. This new directory
will store all media uploaded throughout your Multisite network. All media in
Multisite is uploaded to wp-content/blogs.dir/BLOG_ID/files/YEAR/MONTH. Permalinks for
media fi les look like this: http://example.com/files/2013/10/Halloween.png.

FIGURE 10-1:

Network Setup

submenu

c10.indd 261c10.indd 261 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com/files/2013/10/Halloween.png

262 ❘ CHAPTER 10 MULTISITE

The next step is to add some code to your wp-config.php fi le. This code defi nes the base set-
tings for Multisite, and will vary depending on your setup. The following is a code example for a
Subdirectory install of Multisite under the example.com domain.

define('MULTISITE', true);
define('SUBDOMAIN_INSTALL', false);
$base = '/';
define('DOMAIN_CURRENT_SITE', 'example.com');
define('PATH_CURRENT_SITE', '/');
define('SITE_ID_CURRENT_SITE', 1);
define('BLOG_ID_CURRENT_SITE', 1);

The fi nal step is to replace your .htaccess fi le rules with the new rules provided:

RewriteEngine On
RewriteBase /
RewriteRule ^index\.php$ - [L]

uploaded files
RewriteRule ^([_0-9a-zA-Z-]+/)?files/(.+) wp-includes/ms-files.php?file=$2 [L]

add a trailing slash to /wp-admin
RewriteRule ^([_0-9a-zA-Z-]+/)?wp-admin$ $1wp-admin/ [R=301,L]

RewriteCond %{REQUEST_FILENAME} -f [OR]
RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^ - [L]
RewriteRule ^[_0-9a-zA-Z-]+/(wp-(content|admin|includes).*) $1 [L]
RewriteRule ^[_0-9a-zA-Z-]+/(.*\.php)$ $1 [L]
RewriteRule . index.php [L]

These rules may differ depending on your Multisite setup, so make sure you copy the code provided
in the Network Setup screen when enabling Multisite in WordPress.

After making the required changes, you will be required to log back in to WordPress. The easiest
way to tell when Multisite is enabled is through the WordPress admin bar. You’ll notice a new menu
item named My Sites. When hovering over this menu, the fi rst Submenu link is Network Admin,
which is the main admin dashboard for Multisite.
The My Sites menu will also list all sites you are a
member of in your network, as shown in
Figure 10-2.

WordPress Multisite is now enabled and ready
to use!

WORKING IN A NETWORK

Now that you know how to enable Multisite in WordPress, it’s important to understand how to
manage your network. This section covers the Multisite Network Admin section of WordPress and
how to manage a network.

FIGURE 10-2: Multisite Network menu

c10.indd 262c10.indd 262 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com
http://example.com

Working in a Network ❘ 263

Network Admin

The WordPress Multisite Network Admin is the central hub for all Multisite management of your
network. You can access the Network Admin under the My Sites menu in the WordPress admin bar
or by visiting http://example.com/wp-admin/network/.

The Network Admin should look very familiar because its layout and style are very similar to the
standard WordPress admin dashboard.

Creating and Managing Sites

To view a list of all sites in your Multisite
Network, visit the Sites menu. Here you will see
every site registered in Multisite, regardless of
the status of the site. The list screen gives you
some important information, such as the site
name, last updated date, registered date, and all
users that are members of that site. To edit any
site’s settings, click on the site name to bring up
the Edit Site screen.

The Edit Site section allows you to edit all set-
tings of a specifi c site in your network. You’ll
notice tabs for each settings section, as shown in
Figure 10-3.

The Info tab allows you to edit the domain and path of the site. These two settings are not confi gu-
rable for the main site in your network. You can also change the Registered and Last updated date
and timestamps. The fi nal editable item is the Attributes, or site status, setting. Every site in your
network can have one of the following fi ve site statuses:

 1. Public — Site is public if privacy is set to enable search engines.

 2. Archived — Site has been archived and is not available to the public.

 3. Spam — Site is considered spam and is not available to the public.

 4. Deleted — Site is fl agged for deletion and is not available to the public.

 5. Mature — Site is fl agged as mature.

The only two statuses that don’t remove the site from public viewing are Public and Mature.

The Users tab allows you to administer what users have access to this site. This section will list all
users of the site with their role. You can also add new users to the site. The next section cover users
in Multisite in more detail.

The Themes tab allows you to enable or disable themes for the site. Enabling a theme on this screen
does not actually activate the theme for the site you are editing, but rather, makes that theme an
available option for the site administrator to enable should he choose to do so.

FIGURE 10-3: Edit Site section

c10.indd 263c10.indd 263 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com/wp-admin/network/

264 ❘ CHAPTER 10 MULTISITE

The Settings tab enables you to edit all other settings for the site. There are a lot of options on this
screen. As a good rule, if you don’t know what you are changing, you probably shouldn’t change it.

Working with Users and Roles

Users in a Multisite network work differently than in standard WordPress. The major difference is
that each site in the network can have a different set of users. Users can also be a member of mul-
tiple sites in your network and even have a different user role for each site. For example, you could
be an Administrator on site A, but only an Author on site X.

If Allow New Registrations is enabled under the Network Settings menu, visitors can register
new user accounts in WordPress. A New User is not automatically a member of every site in your
network, but rather the main (fi rst) site in your network. For example, if your network features
two sites, a Halloween site and a Christmas site, any visitor who registers would be a member of
the Halloween site but not the Christmas site. Of course, you could always add this user to the
Christmas site later.

To view all users in your Multisite network, visit the Users menu. Here you will see a list of all users
in the network along with their names, e-mail addresses, registered dates, and a list of sites they are
members of. If the user is a Super Admin, you will see that information listed next to her username.
You can easily add, edit, or delete users from your network in this section.

Themes and Plugins

Multisite handles themes and plugins differently than standard WordPress. All sites in your net-
work can run the same plugins and themes, or they can run a completely different set of plugins and
themes. The fl exibility of this really showcases the power of Multisite in WordPress.

Themes

To view all themes installed in WordPress, visit the Themes menu. The Network Admin Themes
section lists all themes in a list similar to the standard WordPress Plugins section. The major dif-
ference is that rather than an Activate link for each theme, you’ll notice a Network Enable link
instead. Network Enabling any theme listed will make that theme an available option for all sites
in your network. This doesn’t actually activate the theme, but rather makes the theme available to
site administrators under the Appearance ➪ Themes menu in WordPress. This allows you to control
what themes are available for your site administrators to choose from.

Plugins

Plugins work differently from themes in Multisite. Plugins can be Network Activated, which means
the plugin will run on every site in your network. If a plugin is not Network Activated, it can still be
activated at the site level. This means that you can run plugins on any, or all, sites in your network.

To view all plugins available for use, visit the Plugins menu. Here you’ll see a list of plugins that have
been downloaded to WordPress. Clicking the Network Activate link will activate the plugin across
every site in your network. If a plugin is not Network Activated, it will be available to activate at the
site level under the standard Plugins menu.

c10.indd 264c10.indd 264 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 265

Settings

The Settings menu lets you set network-wide settings in Multisite. Here you can enable user account
registration and even site creation for your users. Enabling both of these features would allow visi-
tors to register user accounts and even create new sites in your network.

You can also set what fi le types are allowed for upload, total site upload space, and the max upload
fi le size. If you plan on launching a very large Multisite network, limiting site upload space and max
upload size could save you a massive amount of disk space.

By default, the Plugins menu is hidden from site administrators. This allows only Super Admins to
activate and deactivate plugins at the site level. If you want to enable the Plugins menu for regular
administrators, you can do so under the Menu Settings section.

Domain Mapping

One very common feature for Multisite users is domain mapping. Earlier, you considered the two
default site confi gurations for Multisite: Subdirectory or Subdomain. But what if you want each
site in your network to have a unique domain name? There’s a plugin for that! The WordPress MU
Domain Mapping plugin (http://wordpress.org/extend/plugins/wordpress-mu-domain-
mapping/) allows you to do just that. This plugin makes it very easy to attach a top-level domain to
any site in your network. The plugin also works with both Subdirectory and Subdomain setups. For
example, instead of two sites like http://example.com/brad and http://example.com/myers,
you could have http://brad.com and http://myers.com. All URLs will be served up using the
top-level domain you have assigned to your sites.

CODING FOR MULTISITE

When Multisite is enabled in WordPress, you can take advantage of an entirely new set of Multisite-
specifi c functions and APIs in your themes and plugins. Understanding these new features can help
you make your themes and plugins Multisite-compatible.

Blog ID

Every site in your Multisite network has a unique ID associated with it. This unique ID is called
the Blog ID. Almost every function you work with when writing Multisite-specifi c code will use this
Blog ID. This is how WordPress determines what site you want to work with.

The Blog ID is also used in the database table prefi x with each new site you create in your network.
When you create new sites in Multisite, WordPress creates additional database tables to store that
site’s content and settings. For example, if you create a second site in your network, WordPress will

NOTE It’s important to verify that a plugin is Multisite-compatible prior to net-
work-enabling the plugin. If the plugin hasn’t been tested on Multisite, or coded
properly, there is a chance it could break your network when activated network
wide.

c10.indd 265c10.indd 265 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/
http://wordpress.org/extend/plugins/wordpress-mu-domain-mapping/
http://example.com/brad
http://example.com/myers
http://brad.com
http://myers.com

266 ❘ CHAPTER 10 MULTISITE

create new tables prefi xed like wp_2_posts where wp_ is the table prefi x you defi ned when installing
WordPress, and 2_ is the Blog ID of the new site.

The Blog ID is stored in the global variable $blog_id, as shown here:

<?php
global $blog_id;
echo 'Current Blog ID: ' .$blog_id;
?>

In Multisite, the $blog_id will always be the ID of the current site you are viewing. In standard
WordPress, the $blog_id global variable will always be 1.

Common Functions

Some common functions are available when working with Multisite. The most important function
when working with Multisite is the is_multisite() function, as shown here:

<?php
if (is_multisite()) {
 echo 'Multisite is enabled';
}
?>

This function determines whether Multisite is enabled and, if so, returns true. Anytime you plan
on using Multisite-specifi c functions in WordPress, it’s extremely important that you verify that
Multisite is actually enabled before doing so. If Multisite is not enabled, and you call a Multisite
function, you will receive an error message and the site will break.

Another useful function for retrieving site-specifi c information is the get_blog_details()
function.

<?php get_blog_details($fields, $getall); ?>

The function accepts two parameters:

 1. $fields — Blog ID, a blog name, or an array of fi elds to query against

 2. $getall — Whether to retrieve all details

Using this function, you can retrieve general site information for any site specifi ed.

<?php print_r(get_blog_details(1)); ?>

Running the preceding code example displays the following results:

stdClass Object
(
 [blog_id] => 1
 [site_id] => 1
 [domain] => example.com
 [path] => /

c10.indd 266c10.indd 266 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com

Coding for Multisite ❘ 267

 [registered] => 2012-10-31 19:01:47
 [last_updated] => 2012-10-31 19:01:49
 [public] => 1
 [archived] => 0
 [mature] => 0
 [spam] => 0
 [deleted] => 0
 [lang_id] => 0
 [blogname] => Halloween Site
 [siteurl] => http://example.com
 [post_count] => 420
)

Switching and Restoring Sites

One of the main advantages to using WordPress Multisite is how easy it is to aggregate content, and
other data, between different sites in your Multisite network.

There are two primary functions you can use to retrieve data from other sites in your network. The
fi rst of these is the switch_to_blog() function. This function enables you to switch to any site in
your network:

<?php switch_to_blog($blog_id, $validate); ?>

The function accepts two parameters:

 1. $blog_id — The ID of the site you want to switch to.

 2. $validate — Whether to check if the site exists before proceeding. The default is false.

The second function is restore_current_blog(). This function does exactly what it sounds like: it
restores the previous site after a switch_to_blog() function is called. There are no parameters for
this function; simply call it after you are done gathering content and data from the site.

Consider the following example that uses these two functions. In this example, you’ll create a cus-
tom shortcode to retrieve the latest fi ve posts from a site in your network:

add_shortcode('show_network_posts', 'prowp_get_network_posts');

First, register a new shortcode called show_network_posts using the add_shortcode() function.
The new shortcode will accept one parameter, which is the Blog ID you want to display the latest
posts from. Next, you’ll create the function to return the latest posts from a site in your network.

function prowp_get_network_posts($atts) {
 extract(shortcode_atts(array(
 'blog_id' => '1'
), $atts));

 //verify Multisite is enabled
 if (is_multisite()) {

 //switch to blog ID passed in

c10.indd 267c10.indd 267 12/6/12 1:32 AM12/6/12 1:32 AM

http://example.com

268 ❘ CHAPTER 10 MULTISITE

 switch_to_blog(absint($blog_id));

 //create a custom loop
 $recent_posts = new WP_Query();
 $recent_posts->query('posts_per_page=5');

 $site_posts = '';

 //star the custom loop
 while ($recent_posts->have_posts()) :
 $recent_posts->the_post();

 //store the recent posts in a variable
 $site_posts .= '<p>'
 .get_the_title().'</p>';

 endwhile;

 //restore the current site
 restore_current_blog();

 }

 //return the posts
 return $site_posts;

}

As always, you need to verify that Multisite is enabled using the is_multisite() function check.
Next, use the switch_to_blog() function to switch to the Blog ID passed in through the shortcode.
If the user does not set the Blog ID in the shortcode, it will default to Blog ID 1. Now that you’ve
switched to the site, you’ll create a custom loop using WP_Query to pull the latest posts from the site.
Next, loop through the WP_Query results, storing each post in a variable called $site_posts.

After the loop has completed, you need to run restore_current_blog() to switch back to the pre-
vious site you were viewing. If you do not run this function, WordPress stays on Blog ID 10, so any
subsequent loops or custom code will assume you are still on Blog ID 10, when in fact you are not.
The fi nal step is to return the variable $site_posts, which contain the latest fi ve posts from Blog
ID 10.

That’s it! Now you can easily display the most recent blog posts from any site in your network using
the shortcode: [show_network_posts blog_id="10"]. Listing 10-1 shows the entire code packaged
up in a plugin.

LISTING 10-1: Multisite shortcode example (prowp2-multisite-shortcode.zip)

<?php
/*
Plugin Name: ProWP2 Multisite Shortcode Example
Plugin URI: http://strangework.com/wordpress-plugins
Description: A shortcode to display posts from any site in your network
Version: 1.0
Author: Brad Williams

c10.indd 268c10.indd 268 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com/wordpress-plugins

Coding for Multisite ❘ 269

Author URI: http://strangework.com
License: GPLv2
*/

add_shortcode('show_network_posts', 'prowp_get_network_posts');

function prowp_get_network_posts($atts) {
 extract(shortcode_atts(array(
 'blog_id' => '1'
), $atts));

 //verify Multisite is enabled
 if (is_multisite()) {

 //switch to blog ID passed in
 switch_to_blog(absint($blog_id));

 //create a custom loop
 $recent_posts = new WP_Query();
 $recent_posts->query('posts_per_page=5');

 $site_posts = '';

 //star the custom loop
 while ($recent_posts->have_posts()) :
 $recent_posts->the_post();

 //store the recent posts in a variable
 $site_posts .= '<p>'
 .get_the_title().'</p>';

 endwhile;

 //restore the current site
 restore_current_blog();

 }

 //return the posts
 return $site_posts;

}

?>

The switch_to_blog() function is not just limited to site content, but can also retrieve other
WordPress data including menus, widgets, sidebars, and more. Basically, any data stored in the con-
tent database tables (wp_blogid_tablename) is available when using switch_to_blog().

Consider a different example. This time you’ll retrieve a specifi c menu from a site in your Multisite
network.

<?php
switch_to_blog(10);

c10.indd 269c10.indd 269 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com

270 ❘ CHAPTER 10 MULTISITE

wp_nav_menu('Main Menu');

restore_current_blog();
?>

First run switch_to_blog() to switch to Blog ID 10. Next, use the wp_nav_menu() WordPress
function to display a menu named Main Menu from the site. Finally, run restore_current_blog()
to reset back to the current site you are viewing. The preceding code will display the Main Menu nav
menu from Site ID 10 anywhere you run this code.

It’s important to note that the switch_to_blog() function has the potential to generate very large
SQL queries, which could cause performance issues with WordPress. It’s best to cache any data
retrieved using this function in a transient, which enables data to be temporarily stored as a cached
version. WordPress transients are covered in detail in Chapter 11.

Another important note is that switch_to_blog() only changes the database context; it does not
inherit the entire site confi guration.. This means that a site’s plugins are not included in a switch.
If you switch to a site and try to execute a function specifi c to a plugin that is not enabled, you will
receive an error message.

Creating a New Site

You’ve learned how to create new sites in the Network Admin of Multisite, so now you will see how
to create new sites via code. To do so, you’ll use the wpmu_create_blog() function.

<?php wpmu_create_blog($domain, $path, $title, $user_id, $meta, $site_id); ?>

This function accepts six parameters:

 1. $domain — The domain of the new site

 2. $path — The path of the new site

 3. $title — The title of the new site

 4. $user_id — The user ID of the user account who will be the site admin

 5. $meta — Additional meta information

 6. $site_id — The site ID of the site to be created

Only the fi rst four parameters are required; the last two are optional. The $site_id parameter is
only used if you plan to run multiple WordPress Networks inside a single installation of WordPress.
If the new site is created successfully, the function will return the newly created Blog ID of the site.

For example, you can build a plugin that uses the wpmu_create_blog() function to create new sites
in your Multisite network, as follows:

add_action('admin_menu', 'prowp_multisite_create_menu');

function prowp_multisite_create_menu() {

 //create custom top-level menu

c10.indd 270c10.indd 270 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 271

 add_menu_page('Multisite Create Site Page', 'Multisite Create Site',
 'manage_options', 'prowp-network-create', 'prowp_multisite_create_sites');

}

First, you’ll create a new top-level menu called Multisite Create Site. This menu will link to a custom
function called prowp_multisite_create_sites(), which will allow you to create sites in the net-
work. Go ahead and create that function as follows:

function prowp_multisite_create_sites() {
 //check if multisite is enabled
 if (is_multisite()) {

Remember to always verify that Multisite is enabled using the is_multisite() function. Next,
you’ll add the code to retrieve the submitted form fi eld values and create a new site in Multisite:

//if the form was submitted lets process it
if (isset($_POST['create_site'])) {

 //populate the variables based on form values
 $domain = strip_tags($_POST['domain']);
 $path = strip_tags($_POST['path']);
 $title = strip_tags($_POST['title']);
 $user_id = absint($_POST['user_id']);

 //verify the required values are set
 if ($domain && $path && $title && $user_id) {

 //create the new site in WordPress
 $new_site = wpmu_create_blog($domain, $path, $title, $user_id);

 //if successfully display a message
 if ($new_site) {

 echo '<div class="updated">New site ' .$new_site
 . ' created successfully!</div>';

 }

 //if required values are not set display an error
 } else {

 echo '<div class="error">New site could not be created.
 Required fields are missing</div>';

 }

}

First check if $_POST['create_site'] is set. This fi eld will be set only if the form has been sub-
mitted. Next you’ll populate the variable values with the data submitted via the form. Notice that
you’re using the proper sanitizing functions to verify that the values submitted do not contain

c10.indd 271c10.indd 271 12/6/12 1:32 AM12/6/12 1:32 AM

272 ❘ CHAPTER 10 MULTISITE

HTML and PHP code. You also verify the user_id value is a positive integer using the WordPress
absint() function.

Now that the variables are set, you want to verify they each have a value. If you are missing data
for any of the four required parameters an error message is displayed. After you’ve verifi ed that the
values exist, it’s time to execute the wpmu_create_blog() function to create the new site. If the new
site is created successfully the variable $new_site will contain the new Blog ID of the site.

Now you will build the form for the new site fi elds using the following:

<div class="wrap">
 <h2>Create New Site</h2>
 <form method="post">
 <table class="form-table">
 <tr valign="top">
 <th scope="row"><label for="fname">Domain</label></th>
 <td><input maxlength="45" size="25" name="domain"
 value="<?php echo esc_attr(DOMAIN_CURRENT_SITE); ?>" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">Path</label></th>
 <td><input maxlength="45" size="10" name="path" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">Title</label></th>
 <td><input maxlength="45" size="25" name="title" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">User ID</label></th>
 <td><input maxlength="45" size="3" name="user_id" /></td>
 </tr>
 <tr valign="top">
 <td>
 <input type="submit" name="create_site"
 value="Create Site" class="button-primary" />
 <input type="submit" name="reset" value="Reset" class="button-secondary" />
 </td>
 </tr>
 </table>
 </form>
</div>

This is standard HTML to collect the required fi eld data for creating the new site in Multisite. You
can now easily create new sites in your network using the full plugin shown in Listing 10-2.

LISTING 10-2: Create sites in Multisite example (prowp2-multisite-create-site.zip)

<?php
/*
Plugin Name: ProWP2 Create Site Example Plugin
Plugin URI: http://strangework.com/wordpress-plugins
Description: A plugin to demonstrate creating sites in Multisite

c10.indd 272c10.indd 272 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com/wordpress-plugins

Coding for Multisite ❘ 273

Version: 1.0
Author: Brad Williams
Author URI: http://strangework.com
License: GPLv2
*/

add_action('admin_menu', 'prowp_multisite_create_menu');

function prowp_multisite_create_menu() {

 //create custom top-level menu
 add_menu_page('Multisite Create Site Page',
 'Multisite Create Site', 'manage_options',
 'prowp-network-create', 'prowp_multisite_create_sites');

}

function prowp_multisite_create_sites() {

 //check if multisite is enabled
 if (is_multisite()) {

 //if the form was submitted let's process it
 if (isset($_POST['create_site'])) {

 //populate the variables based on form values
 $domain = strip_tags($_POST['domain']);
 $path = strip_tags($_POST['path']);
 $title = strip_tags($_POST['title']);
 $user_id = absint($_POST['user_id']);

 //verify the required values are set
 if ($domain && $path && $title && $user_id) {

 //create the new site in WordPress
 $new_site = wpmu_create_blog($domain, $path,
 $title, $user_id);

 //if successfully display a message
 if ($new_site) {

 echo '<div class="updated">New site '
 .$new_site. ' created successfully!</div>';

 }

 //if required values are not set display an error
 } else {

 echo '<div class="error">New site could not be created.
 Required fields are missing</div>';

 }

 }

continues

c10.indd 273c10.indd 273 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com

274 ❘ CHAPTER 10 MULTISITE

 ?>
 <div class="wrap">
 <h2>Create New Site</h2>
 <form method="post">
 <table class="form-table">
 <tr valign="top">
 <th scope="row"><label for="fname">Domain</label></th>
 <td><input maxlength="45" size="25" name="domain"
 value="<?php echo esc_attr(DOMAIN_CURRENT_SITE); ?>" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">Path</label></th>
 <td><input maxlength="45" size="10" name="path" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">Title</label></th>
 <td><input maxlength="45" size="25" name="title" /></td>
 </tr>
 <tr valign="top">
 <th scope="row"><label for="fname">User ID</label></th>
 <td><input maxlength="45" size="3" name="user_id" /></td>
 </tr>
 <tr valign="top">
 <td>
 <input type="submit" name="create_site"
 value="Create Site" class="button-primary" />
 <input type="submit" name="reset"
 value="Reset" class="button-secondary" />
 </td>
 </tr>
 </table>
 </form>
 </div>
 <?php
 } else {

 echo '<p>Multisite is not enabled</p>';

 }

}
?>

Network Admin Menus

Earlier this chapter covered the Multisite Network Admin section of WordPress. This Dashboard is
where all Network Settings are confi gured. As in standard WordPress, you can add menus and sub-
menus to the Network Admin screen. To do this, you’ll use the network_admin_menu action hook,
as shown here:

add_action('network_admin_menu', 'prowp_add_network_settings_menu');

LISTING 10-2 (continued)

c10.indd 274c10.indd 274 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 275

The network_admin_menu action hook is triggered after the default network admin menu structure
is in place. The second parameter is the custom function prowp_add_network_settings_menu(),
which will register your new menu.

function prowp_add_network_settings_menu() {

 //add settings menu
 add_menu_page('ProWP2 Options Page', 'ProWP2 Options',
 'manage_options', 'prowp-network-settings', 'prowp_network_settings');

}

As you can see, registering the new menu is exactly the same as registering a standard WordPress
menu. In this example, you use the add_menu_page() function to create a new top-level menu in the
Network Admin, as shown in Figure 10-4.

Just as easily as you can add a new top-level menu to the Network Admin, you can add submenu
items to existing menus. To do this, you’ll use the add_submenu_page() function, as shown here:

function prowp_add_network_settings_menu() {

 //add Settings submenu
 add_submenu_page('settings.php', 'ProWP2 Options Page',
 'ProWP2 Options', 'manage_options', 'prowp-network-settings',
 'prowp_network_settings');

}

This function works exactly as in standard WordPress. The fi rst parameter,
settings.php in this case, is the most important. That value tells the function
what top-level menu to add your submenu to. In this example, you added a sub-
menu item called ProWP2 Options to the Settings menu in the Network Admin.

The following is a list of fi le names that you can add submenus to:

 ➤ index.php — Add submenu to the Dashboard menu

 ➤ sites.php — Add submenu to the Sites menu

 ➤ users.php — Add submenu to the Users menu

 ➤ themes.php — Add submenu to the Themes menu

 ➤ plugins.php — Add submenu to the Plugins menu

 ➤ settings.php — Add submenu to the Settings menu

 ➤ update-core.php — Add submenu to the Updates menu

As a general rule, it’s best to add your Network Settings as a submenu of the Settings menu in
the Network Admin. This is where most users will look for plugin settings, just like in standard
WordPress.

FIGURE 10-4:

Network Admin

top-level menu

c10.indd 275c10.indd 275 12/6/12 1:32 AM12/6/12 1:32 AM

276 ❘ CHAPTER 10 MULTISITE

Multisite Options

When storing options in Multisite, it’s important to use the proper functions to store the options in
the proper place. The question you should ask yourself is who should control the settings value. If
the setting is specifi c to each site in the network, and can vary between sites, then you should store
your options as site options. If the setting should be a network-wide setting that shouldn’t vary
between sites, then you should store your options as network options.

Site Options

To store site-specifi c options in Multisite, you can utilize the *_blog_option() functions. The fol-
lowing is a list of each function:

 ➤ add_blog_option() — Creates a new option

 ➤ update_blog_option() — Updates an option and creates it if it doesn’t exist

 ➤ get_blog_option() — Loads a site option

 ➤ delete_blog_option() — Deletes a site option

These functions work almost identically to the standard WordPress option functions; the major dif-
ference is that the functions require a $blog_id parameter to be defi ned, as shown here:

<?php add_blog_option($blog_id, $key, $value); ?>

The $key parameter is the option name you want to set and the $value parameter is the value to set
for the option.

Retrieving a site option is just as easy. The following example shows you how to use get_blog_
option() to retrieve site-specifi c options for Blog ID 10:

<?php
$blog_id = 10;
echo '<p>Site ID: ' .$blog_id .'</p>';
echo '<p>Site Name: ' .get_blog_option($blog_id, 'blogname') .'</p>';
echo '<p>Site URL: ' .get_blog_option($blog_id, 'siteurl') .'</p>';
?>

Network Options

To store network-wide options in Multisite, you can utilize the *_site_option() functions. The
follow list describes each function:

 ➤ add_site_option() — Creates a new network option

 ➤ update_site_option() — Updates a network option and creates it if it doesn’t exist

 ➤ get_site_option() — Loads a network option

 ➤ delete_site_option() — Deletes a network option

c10.indd 276c10.indd 276 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 277

These functions work almost identically to standard WordPress option functions, but the option
values are stored in the wp_sitemeta Multisite database table. You can use these functions to store
global Multisite settings that should be the same for all sites in your network.

<?php add_site_option($key, $value); ?>

Notice you do not need to defi ne the Blog ID when adding a network option. Because you are stor-
ing a network option, it doesn’t matter what Blog ID the code is being executed from.

If Multisite is not enabled, and your code calls one of the *_site_option() functions, WordPress
will fall back to using standard *_option() functions such as add_option().

Network Options Example

Now that you understand how to create and retrieve network options, let’s build a simple network
options plugin for Multisite. In this example, you are going to build a plugin to store network
wide options. The plugin will degrade gracefully, so if the user is not running Multisite, the
options will be stored as standard WordPress options.

The fi rst step in your plugin will be to add the Network Settings menu.

add_action('init', 'prowp_network_settings_menu');

function prowp_network_settings_menu() {

 if (is_multisite()) {

 //Multisite is enabled so add menu to Network Admin
 add_action('network_admin_menu', 'prowp_add_network_settings_menu');

 } else {

 //Multisite is NOT enabled so add menu to WordPress Admin
 add_action('admin_menu', 'prowp_add_network_settings_menu');

 }

}

The init action hook is used to call your custom function to register the network options menu.
Notice how the is_multisite() function is used in the preceding example. If the user has Multisite
enabled, the new menu will be added to the Network Admin of Multisite. If the user does not have
Multisite enabled, the menu will be added as a standard WordPress menu. This code is important to
preserve compatibility regardless of whether Multisite is enabled or not.

Now that you’ve registered the proper menu action hook, you need to create the custom function to
register the new menu.

function prowp_add_network_settings_menu() {

 //add settings menu
 add_menu_page('Network Options Page', 'Network Options',

c10.indd 277c10.indd 277 12/6/12 1:32 AM12/6/12 1:32 AM

278 ❘ CHAPTER 10 MULTISITE

 'manage_options', 'prowp-network-settings', 'prowp_network_settings');

}

The preceding code uses the add_menu_page() function to create a new top-level menu labeled
Network Options. Now that the menu has been created, you need to create the actual settings form.

//generate the settings page
function prowp_network_settings() {
 ?>
 <div class="wrap" >
 <div id="icon-options-general" class="icon32"></div>
 <h2>Network Settings</h2>
 <form method="post">
 <?php
 //load option values
 $network_settings = get_site_option('prowp_network_settings');
 $api_key = $network_settings['api_key'];
 $holiday = $network_settings['holiday'];
 $rage_mode = (! empty($network_settings['rage_mode']))
 ? $network_settings['rage_mode'] : '';

 //create nonce hidden field for security
 wp_nonce_field('save-network-settings', 'prowp-network-plugin');
 ?>
 <table class="form-table">
 <tr valign="top"><th scope="row">API Key:</th>
 <td><input type="text" name="network_settings[api_key]"
 value="<?php echo esc_attr($api_key); ?>" /></td>
 </tr>
 <tr valign="top"><th scope="row">Network Holiday</th>
 <td>
 <select name="network_settings[holiday]">
 <option value="halloween"
 <?php selected($holiday, 'halloween'); ?> >
 Halloween
 </option>
 <option value="christmas"
 <?php selected($holiday, 'christmas'); ?> >
 Christmas
 </option>
 <option value="april_fools"
 <?php selected($holiday, 'april_fools'); ?> >
 April Fools
 </option>
 </select>
 </td>
 </tr>
 <tr valign="top"><th scope="row">Rage Mode:</th>
 <td><input type="checkbox" name="network_settings[rage_mode]"
 <?php checked($rage_mode, 'on'); ?> /> Enabled
 </td>
 </tr>
 </table>

c10.indd 278c10.indd 278 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 279

 <p class="submit">
 <input type="submit" class="button-primary"
 name="network_settings_save" value="Save Settings" />
 </p>
 </form>
 </div>
 <?php
}

You’ll use a standard HTML form to manage the Network Settings. The options will be stored
as an array in a single option, as described in the Plugin Settings section of Chapter 8, “Plugin
Development.” The fi rst step is to load any existing setting values. Using the get_site_option()
function, you’ll load the prowp_network_settings value, which is your options array, if any exists.
Next, set each option value into individual variables. Before you actually create your form, use the
wp_nonce_field() function to create a hidden form fi eld nonce for security.

Now it’s time to build the form. The fi rst form fi eld is an API Key, which is a standard text fi eld.
The second form fi eld is a select fi eld. Notice how you use the selected() function to determine
which option should be selected. The fi nal setting is a check box for Rage Mode. This option uses
the checked() function to determine if the option is checked or not. Because you are using a stan-
dard HTML form, you’ll need to add a submit button to submit the form values.

Now that your Network Settings form is set up, you’ll need to create the function to process and
save the form data.

add_action('admin_init', 'prowp_save_network_settings');

//save the option values
function prowp_save_network_settings() {

 //if network settings are being saved, process it
 if (isset($_POST['network_settings'])) {

 //check nonce for security
 check_admin_referer('save-network-settings', 'prowp-network-plugin');

 //store option values in a variable
 $network_settings = $_POST['network_settings'];

 //use array map function to sanitize option values
 $network_settings = array_map('sanitize_text_field', $network_settings);

 //save option values
 update_site_option('prowp_network_settings', $network_settings);

 }

}

You’ll use the admin_init hook for your custom function for saving the form data. The fi rst step is
to verify that form values have been posted. If the form wasn’t submitted, there’s nothing for you to
process. You’ll do this by verifying that $_POST['network_settings'] is actually set by using the

c10.indd 279c10.indd 279 12/6/12 1:32 AM12/6/12 1:32 AM

280 ❘ CHAPTER 10 MULTISITE

isset() PHP function. Once you’ve verifi ed that there is form data to process, you need to check
your nonce using the check_admin_referer() function.

Once the nonce check passes, you’ll store the post data in the $network_settings variable. Because
the data that you are processing is user-provided, it’s important to sanitize that data before storing
it in the database. In this example, you’ll use the array_map() PHP function, which will send each
individual value of the array to any function specifi ed, in this case the sanitize_text_field()
WordPress function. Now that your data is properly sanitized, you’ll save the option using the
update_site_option() function.

That’s it! You have just built a fully functional Network Settings section that is fully compatible
with standard WordPress. If the user is running Multisite, the menu will show in the Network
Admin and the option values will be stored in the wp_sitemeta table. If the user is not running
Multisite, the menu will show in the standard WordPress Admin Dashboard and the option values
will be stored in the wp_options table.

Listing 10-3 shows the fi nalized plugin.

LISTING 10-3: Multisite network settings (prowp2-multisite-network-settings.zip)

<?php
/*
Plugin Name: ProWP2 Network Settings Example
Plugin URI: http://strangework.com/wordpress-plugins
Description: This is a plugin demonstrating the Multisite Network WordPress
 Settings
Version: 1.0
Author: Brad Williams
Author URI: http://strangework.com
License: GPLv2
*/

add_action('init', 'prowp_network_settings_menu');

function prowp_network_settings_menu() {

 if (is_multisite()) {

 //Multisite is enabled so add menu to Network Admin
 add_action('network_admin_menu', 'prowp_add_network_settings_menu');

 } else {

 //Multisite is NOT enabled so add menu to WordPress Admin
 add_action('admin_menu', 'prowp_add_network_settings_menu');

 }

}

function prowp_add_network_settings_menu() {

 //add settings menu

c10.indd 280c10.indd 280 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com/wordpress-plugins
http://strangework.com

Coding for Multisite ❘ 281

 add_menu_page('Network Options Page',
 'Network Options', 'manage_options',
 'prowp-network-settings', 'prowp_network_settings');

}

//generate the settings page
function prowp_network_settings() {
 ?>
 <div class="wrap" >
 <div id="icon-options-general" class="icon32"></div>
 <h2>Network Settings</h2>
 <form method="post">
 <?php
 //load option values
 $network_settings = get_site_option('prowp_network_settings');
 $api_key = $network_settings['api_key'];
 $holiday = $network_settings['holiday'];
 $rage_mode = (! empty($network_settings['rage_mode']))
 ? $network_settings['rage_mode'] : '';

 //create nonce hidden field for security
 wp_nonce_field('save-network-settings', 'prowp-network-plugin');
 ?>
 <table class="form-table">
 <tr valign="top"><th scope="row">API Key:</th>
 <td><input type="text"
 name="network_settings[api_key]"
 value="<?php echo esc_attr($api_key); ?>"
 /></td>
 </tr>
 <tr valign="top"><th scope="row">Network Holiday</th>
 <td>
 <select name="network_settings[holiday]">
 <option value="halloween"
 <?php selected($holiday, 'halloween'); ?>
 >Halloween</option>
 <option value="christmas"
 <?php selected($holiday, 'christmas'); ?>
 >Christmas</option>
 <option value="april_fools"
 <?php selected($holiday, 'april_fools'); ?>
 >April Fools</option>
 </select>
 </td>
 </tr>
 <tr valign="top"><th scope="row">Rage Mode:</th>
 <td><input type="checkbox"
 name="network_settings[rage_mode]"
 <?php checked($rage_mode, 'on'); ?> />
 Enabled
 </td>
 </tr>
 </table>

continues

c10.indd 281c10.indd 281 12/6/12 1:32 AM12/6/12 1:32 AM

282 ❘ CHAPTER 10 MULTISITE

 <p class="submit">
 <input type="submit" class="button-primary"
 name="network_settings_save" value="Save Settings" />
 </p>
 </form>
 </div>
 <?php
}

add_action('admin_init', 'prowp_save_network_settings');

//save the option values
function prowp_save_network_settings() {

 //if network settings are being saved, process it
 if (isset($_POST['network_settings'])) {

 //check nonce for security
 check_admin_referer('save-network-settings', 'prowp-network-plugin');

 //store option values in a variable
 $network_settings = $_POST['network_settings'];

 //use array map function to sanitize option values
 $network_settings = array_map('sanitize_text_field', $network_settings);

 //save option values
 update_site_option('prowp_network_settings', $network_settings);

 }

}

Users in a Network

When working with users in a Multisite network, you should always verify that a user is a member
of a specifi c site. To do this, you’ll use the is_user_member_of_blog() function.

<?php is_user_member_of_blog($user_id, $blog_id); ?>

The function accepts two optional parameters. The fi rst parameter is the user ID of the user you
want to check. If not set, the function will check the current user. The second parameter is the Blog
ID. If this parameter isn’t set, the function defaults to the current site you are on.

<?php
if (is_user_member_of_blog()) {
 //current user is a member of this site
}
?>

The preceding code example will verify that the user is a member of the current site they are
viewing.

LISTING 10-3 (continued)

c10.indd 282c10.indd 282 12/6/12 1:32 AM12/6/12 1:32 AM

Coding for Multisite ❘ 283

Now that you understand how to verify that a user is a member of a site, you can add users to a site
with the add_user_to_blog() function:

<?php add_user_to_blog($blog_id, $user_id, $role); ?>

The function accepts three parameters:

 1. $blog_id — The ID of the site you want to add the user to

 2. $user_id — The ID of the user to add

 3. $role — The role the user will have on the site

Now build a plugin that automatically adds a logged-in user to any site that the user visits in your
Multisite network, as follows:

add_action('init', 'prowp_multisite_add_user_to_site');

First, you’ll use the init action hook to execute your custom function to add users to the site.

function prowp_multisite_add_user_to_site() {

 //verify user is logged in before proceeding
 if(!is_user_logged_in())
 return false;

 //load current blog ID and user data
 global $current_user, $blog_id;

 //verify user is not a member of this site
 if(! is_user_member_of_blog()) {

 //add user to this site as a subscriber
 add_user_to_blog($blog_id, $current_user->ID, 'subscriber');

 }

}

The fi rst step is to verify the user is logged in, and if not exit the function by returning false. Next
you’ll call the global $current_user and $blog_id variables. These variables store the data of the
current logged-in user and the Blog ID the user is currently viewing. Next confi rm that the user is
not a member of the current site using the is_user_member_of_blog() function. The fi nal step is
to add the user to the site using the add_user_to_blog() function. In this example you set the role
of the user to subscriber, but you could easily change this to any role you’d like.

That’s it! For this plugin to work across your entire network you’ll either need to Network Activate
the plugin or upload to the /mu-plugins directory. Either option will force the plugin to run across
all sites in your network.

The fi nalized plugin is shown in Listing 10-4.

c10.indd 283c10.indd 283 12/6/12 1:32 AM12/6/12 1:32 AM

284 ❘ CHAPTER 10 MULTISITE

LISTING 10-4: Automatically add users to sites in Multisite (prowp2-multisite-add-users.zip)

<?php
/*
Plugin Name: ProWP2 Multisite Auto-Add User to Site
Plugin URI: http://strangework.com/wordpress-plugins
Description: Plugin automatically adds the user to any site they visit
Version: 1.0
Author: Brad Williams
Author URI: http://strangework.com
License: GPLv2
*/

add_action('init', 'prowp_multisite_add_user_to_site');

function prowp_multisite_add_user_to_site() {

 //verify user is logged in before proceeding
 if(!is_user_logged_in())
 return false;

 //load current blog ID and user data
 global $current_user, $blog_id;

 //verify user is not a member of this site
 if(! is_user_member_of_blog()) {

 //add user to this site as a subscriber
 add_user_to_blog($blog_id, $current_user->ID, 'subscriber');

 }

}
?>

Now that you understand how to add users to a site, you can remove users from a site. To remove
users you’ll use the remove_user_from_blog() function:

<?php remove_user_from_blog($user_id, $blog_id, $reassign); ?>

This function accepts three parameters:

 1. $user_id — ID of the user you want to remove

 2. $blog_id — ID of the blog to remove the user from

 3. $reassign — ID of a user to reassign posts to

The $user_id and $blog_id parameters are required. The $reassign parameter is optional. This
parameter should be the ID of the user you want to reassign posts to when removing a user.

c10.indd 284c10.indd 284 12/6/12 1:32 AM12/6/12 1:32 AM

http://strangework.com/wordpress-plugins
http://strangework.com

Coding for Multisite ❘ 285

To retrieve a list of all sites a user belongs to you’ll use the get_blogs_of_user() function. This
function returns an array of objects containing the details of each site the user has access to. Here’s
an example:

<?php
$user_id = 1;
$user_blogs = get_blogs_of_user($user_id);

echo 'User '.$user_id.'\'s blogs:';

foreach ($user_blogs AS $user_blog) {

 echo '' .$user_blog->blogname .'';

}

echo '';
?>

The preceding code retrieves the site data for all sites that user ID 1 is a member of. You then loop
through the returned array, displaying the blogname value for each site.

Super Admins

Earlier this chapter covered the new user role introduced in Multisite, the Super Admin role. Any
user set to the Super Admin role has full control over every site in your Multisite network. Users set
to the Super Admin role also have full control over what themes and plugins are available, all users,
and network-wide settings.

To retrieve a list of all Super Admins in Multisite you’ll use the get_super_admins() function. This
function accepts no parameters and returns an array of all Super Admin usernames in your net-
work. Here’s an example:

<?php
$all_admins = get_super_admins();
print_r($all_admins);
?>

The preceding code example would return the following array of Super Admins:

Array

(
 [0] => admin
 [1] => michael_myers
)

NOTE Remember that adding and removing users from a site in Multisite is not
actually creating or deleting the user in WordPress, but instead adding or remov-
ing them as a member of a specifi c site.

c10.indd 285c10.indd 285 12/6/12 1:32 AM12/6/12 1:32 AM

286 ❘ CHAPTER 10 MULTISITE

You can also check a specifi c user ID to determine if this user is a Super Admin in your network. To
do so, use the is_super_admin() function, as shown here:

<?php
$user_id = 1;

if (is_super_admin($user_id)) {
 echo 'User is a Super Admin';
}
?>

The preceding code example checks if User ID 1 is a Super Admin. The function accepts a $user_id
as an optional parameter. If the user ID isn’t passed to the function, it defaults to the current user.

Now that you understand how to check for Super Admins, you can make a user a Super Admin. You
can easily assign an existing user to the Super Admin role by using the grant_super_admin() func-
tion. This function accepts a single required parameter, which is the user ID you want to add to the
Super Admin role.

<?php
$user_id = 34;
grant_super_admin($user_id);
?>

You can also easily remove a user from the Super Admin role with the revoke_super_admin()
function. As in the preceding code, this function accepts a single parameter, which is the user ID
you want to remove from the Super Admin role:

<?php
$user_id = 34;
revoke_super_admin($user_id);
?>

Both of these functions are located in wp-admin/includes/ms.php. This means that these functions
are not available on the public side of your website and can only be used on the admin side.

Network Stats

Multisite features various functions to generate stats about your network. The get_blog_count()
function returns the total number of sites in your network. To return the total number of users in
your network, use the get_user_count() function.

<?php
$site_count = get_blog_count();
$user_count = get_user_count();

echo '<p>Total sites: ' .$site_count .'</p>';
echo '<p>Total users: ' .$user_count .'</p>';
?>

c10.indd 286c10.indd 286 12/6/12 1:32 AM12/6/12 1:32 AM

Multisite Database Schema ❘ 287

You can also use the get_sitestats() function to retrieve both values at once in an array.

<?php
$network_stats = get_sitestats();

echo '<p>Total sites: ' .$network_stats['blogs'] .'</p>';
echo '<p>Total users: ' .$network_stats['users'] .'</p>';
?>

MULTISITE DATABASE SCHEMA

WordPress Multisite features a different database schema from standard WordPress. When
enabling Multisite, WordPress creates the necessary tables in your database to support Multisite
functionality.

Multisite-Specifi c Tables

WordPress stores global Multisite settings in centralized tables. These tables are created only when
Multisite is enabled and installed, excluding the wp_users and wp_usermeta tables, which exist in
standard WordPress.

 ➤ wp_blogs — Contains each site created in Multisite.

 ➤ wp_blog_versions — Contains the current database version of each site in the network.

 ➤ wp_registration_log — A log of all users registered and activated in WordPress.

 ➤ wp_signups — Contains users and sites registered using the WordPress registration process.

 ➤ wp_site — Contains the primary site’s address information.

 ➤ wp_sitecategories — Contains global terms. Only exists if global terms have been
enabled in WordPress.

 ➤ wp_sitemeta — Contains option data for the network, including Super Admin accounts.

 ➤ wp_users — Contains all users registered in WordPress.

 ➤ wp_usermeta — Contains all metadata for user accounts in WordPress.

As you have probably noticed, some important WordPress tables are missing. The rest of the tables
created for Multisite are site-specifi c.

Site-Specifi c Tables

Every site in your network features its own set of site-specifi c database tables. These tables contain
the content and settings specifi c to that individual site. Remember that these tables are prefi xed with
the $table_prefix value defi ned in wp-config.php, followed by the $blog_id and then the table
name.

c10.indd 287c10.indd 287 12/6/12 1:32 AM12/6/12 1:32 AM

288 ❘ CHAPTER 10 MULTISITE

 ➤ wp_2_commentmeta

 ➤ wp_2_comments

 ➤ wp_2_links

 ➤ wp_2_options

 ➤ wp_2_postmeta

 ➤ wp_2_posts

 ➤ wp_2_terms

 ➤ wp_2_term_relationships

 ➤ wp_2_term_taxonomy

Every time you create a new site in your Multisite network, WordPress will create the preceding nine
tables in your database for the new site. As you can see, these tables can make your database quickly
grow in size. That’s why the only limitation to WordPress Multisite is the server resources available
for your network of sites. If your network contains 1,000 sites, your database would have more
than 9,000 tables. Obviously a network of this size would not work well on a small, shared hosting
account.

In Chapter 6, “Data Management,” you covered the importance of using the WordPress database
class when querying the database directly. This is especially important in Multisite since the table
prefi x contains the Blog ID of the site you are viewing. When writing a custom query, you should
always prefi x the table reference with $wpdb->, which will include the site ID if you are running
Multisite. As an example, $wpdb->posts would query the wp_2_posts table above, assuming you
are working on Blog ID 2 in your network.

SUMMARY

WordPress Multisite is an amazing feature of WordPress with limitless possibilities. Now that
Multisite is a core WordPress feature, many users are converting their standard WordPress website
to a Multisite network to take advantage of the rapid site deployment features and network capabili-
ties. As more and more users are becoming familiar with the power of Multisite, its use is growing
at a very rapid pace. When developing for WordPress, it’s very important to think about Multisite
and how your code can utilize these powerful Multisite features covered in this chapter. As a
WordPress user, it’s also very important to verify the themes and plugins you are using are Multisite
compatible.

In the next chapter you’ll cover Content Aggregation. You’ll learn how to work with external APIs
to import data from various sources into your website, social media button integration, and under-
standing different advertising methods and how to monetize your website.

c10.indd 288c10.indd 288 12/6/12 1:32 AM12/6/12 1:32 AM

Content Aggregation

WHAT’S IN THIS CHAPTER?

 ➤ Getting your content noticed

 ➤ Importing various sources into your WordPress site

 ➤ Using WordPress to cache remote content

 ➤ Understanding diff erent advertising methods to monetize your

website

When we began writing this book three years ago, “content aggregation” was viewed as a set
of mechanisms to keep your WordPress site updated with information scattered across a rapidly
growing number of social networks, and to feed WordPress content updates into those same
networks. Sometimes WordPress was the source, sometimes the destination, but the focus was
on moving content around — and in so doing, a bit of advice was overlooked in Chapter 1,
namely, that sometimes context is as important as the actual content. “Content aggregation” is
about how and where you want to direct your audience, and for what purposes.

A brief look at what’s changed between editions sets the context for this: Facebook has
reached close to a billion users. Twitter sends hashtags in trending motion, and most large
content sites have vanity URL shorteners to supplant bit.ly. Google, Bing, and Yahoo are the
somewhat lopsided three legs of search.

There’s one invariant over time: your WordPress site represents the sum total of your exper-
tise, personal brand, curated content, and design. It is the thing you put in a registration form
fi eld labeled “Personal Website” or “Business Website,” and that distinction may help shape
the way you manage content aggregation. If your website is about you as an individual, and
you see WordPress as an additional vehicle to reach your audience, then you’ll be pulling con-
tent in from other sources to populate your WordPress site. Your goal typically is to grow an
audience, with less concern for where that audience resides on the web. On the other hand, if
your website is about your business or your personal brand as a consultant or expert, or even

11

c11.indd 289c11.indd 289 12/6/12 1:32 AM12/6/12 1:32 AM

290 ❘ CHAPTER 11 CONTENT AGGREGATION

just a landing page for valuable advertising, then you’ll want to focus your audience on your own
website. Facebook and Twitter are additional conduits for attracting readers whom you’ll want to
click through to your WordPress site.

As you evaluate the inbound and outbound aggregation methods in this chapter, think about their
effect on reaching your audience: Is WordPress the only channel, or is it one of many channels?

This chapter discusses pulling content from external locations — typically social networking
 destinations — into your website, and conversely, taking your own content and publishing it
through social sites or feeds. In particular, you will cover YouTube, Twitter, Facebook, and sub-
scription feeds, since they are the most common. You’ll also consider how to utilize other content
sites with their own best of breed and open APIs such as Google Maps, and how you can use the
WordPress API to integrate other sources. You’ll start with leveraging social networks to get your
site and content noticed through outbound content aggregation.

GETTING NOTICED

Nearly all websites exist so that visitors will transact business, whether that business involves goods,
services, or your own brand. Before any transaction can happen, however, people have to be able to
fi nd your website. This section is about promoting that brand and your site on the web through con-
tent sharing and social networks, not search engine optimization or “SEO.” SEO and getting your
site discovered are covered in Chapter 12.

Promoting your online identity is one of the major reasons to amass your online interactions into
one place. You can collect all of your social media interactions on your website to showcase your
professional involvement in a community or profession. This can highlight your expertise in one or
more specifi c areas as well as expand your potential audience to different groups. It can really func-
tion as a type of business networking among different potential readership groups.

Even if you’re not using a public persona for business purposes, the same goal of centralizing all of
your online activities amplifi es the benefi ts to your hobbies or your personal passion. If you partici-
pate in social networks for home beer-brewing, why not aggregate those activities into one location?
If you attract attention because of your witty insight or accurate and knowledgeable information,
aggregation is one way to become recognized as an expert in your fi eld of interest. A nice side effect
of this aggregation effect is that the larger the number of links that point back to your website, the
more the popular search engines will fi nd your site, as covered in Chapter 12.

Collecting information from multiple sites into your WordPress site makes it easier for others to
fi nd that information. Your readers or potential audience don’t have to keep tabs on all the different
places in which your updates could be broadcast or shared. In the same vein, how will clients know
to check your latest YouTube promotional video if they do not know it is even available? Collecting
this information into a primary source brings all these different data points in front of your audi-
ence’s eyes through content aggregation. And in the end, it drives traffi c to your site rather than
away from it, because your site becomes the one true source.

This is a classic long tail content problem, and is worth discussing a little more. Your website is just
one source of content in hundreds of millions out there. But the people you intersect and actively

c11.indd 290c11.indd 290 12/6/12 1:32 AM12/6/12 1:32 AM

Getting Noticed ❘ 291

communicate with, and the set of those people’s friends and families (the “closure of the set” if
you’re an honorary advanced math geek), builds an audience: your audience. Aggregating your
content is about building this audience by showing up in multiple places with appropriate content,
context, and granularity of updates. Tweeting about recent blog posts, or importing blog post sum-
maries into Facebook, for example, are easy ways to spread the word. Incorporating professional
organizations that strengthen your own professional reputation furthers this goal.

Furthermore aggregation is not simply talking about accumulating social network content but also
using websites that provide a functionality, geophysical content or a service that is incorporated into
your website. Google Maps is an obvious addition so clients and customers can fi nd your business;
so is including Twitter discussions by or about your brand or containing a relevant hashtag.

In the end, having more functionality on your site is still marketing. You are either trying to get
your site to be more full featured and attractive to your potential clients and customers, or you are
leveraging a third-party content source to provide some value.

Social Media Buttons

Marketing is marketing — somehow you have to get your website noticed. A great way — perhaps
the best way — to get your content noticed and generate more traffi c to your site is to use the power
of the social networking sites. First, you have to have good, interesting content on your site. But
unlike Field of Dreams, if you built it, they will not necessarily come. You have to advertise. Of
course, an ambitious and loyal visitor may take the link to your content and submit it to the Internet
at large, but why not make it even easier?

Adding social media buttons to your WordPress site makes it easy for readers to include your
 content in their rankings, ratings, or aggregations, or simply to broadcast to their audience, “Hey
people, I like this.” Getting consumers to share their preferences and point back to your content is
the core idea of the “long tail” of content; without recommendations from similarly like-minded
people, your content never gets discovered. This is true for music, movies, or blogs. So why not
make it a one-click event to share your content on your visitors’ own social streams?

The ShareThis plugin (http://wordpress.org/extend/plugins/share-this/) does just this. The
Sociable plugin supports links to nearly 120
different social networking channels for your
visitors to share your content. This plugin is
confi gurable and has a decent control panel.
You can confi gure which sites are enabled
for sharing, allowing you to tailor the des-
tination site list for your audience or just
your own preferences. There are also several
options for controlling the rendering of the
social networking icons on your site, as well
as some additional styling options.

The default options provide a nice sharing
snippet at the bottom of each post, as shown
in Figure 11-1.

FIGURE 11-1: ShareThis social networking button under a

WordPress post

c11.indd 291c11.indd 291 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/share-this/

292 ❘ CHAPTER 11 CONTENT AGGREGATION

Most admirable about this plugin is the simplicity. Out of the box, it just works, and it works as
advertised. Visitors can read some of your great content and decide to share it on Pinterest. They
simply need to click the Pinterest icon and log in to Pinterest. It is that simple.

Feeding WordPress Upstream

If you adopt the notion that your WordPress site is the eventual destination for your audience, then
your presence on Facebook, Twitter, and Pinterest is “upstream” from that click-through target.
While you benefi t from readers sharing content via the social media buttons, you can also feed entire
posts, lead-ins, or post titles to your other online profi les.

Getting your updates on Twitter can be as simple or complex as you like. In the corner case simply
tweet about your latest post, using a URL shortener to open up tweet room for hashtags, com-
ments, or a witty cross-reference. If you prefer to have your Twitter account announce each new
post on your WordPress site, check out a plugin such as Tweetily (http://wordpress.org/extend/
plugins/tweetily-tweet-wordpress-posts-automatically/) to construct tweets from post
titles and your introductory or hashtag text.

Sending your post content off to Facebook prompts another “where do I want my audience to end
up” thought exercise. If you automatically re-post WordPress content into your Facebook newsfeed,
then the Facebook audience has no reason or need to come back to your WordPress site, and you
may lose commenters, readers, or possible click-throughs to other content. You’re effectively frag-
menting your audience by sharing content, however counterintuitive that seems. On the other hand,
if your Facebook audience is a source of new readers who may discover you via a friend of a friend
or because someone “liked” your post, then feeding your posts up to Facebook can add to your
audience. There’s a middle ground if you decide to create a Facebook page for your WordPress site,
neatly working around the bidirectional nature of “friend” relationships and the limit on the num-
ber of friend connections you can have.

Whether it’s a page or your personal account, the simplest way to get content from your WordPress
site into Facebook is via the Facebook RSS Graffi ti application (http://apps.facebook.com/rss-
graffiti/). Within Facebook, install the application, and then point it at the RSS feed of your
site, which is of the form example.com/feed/rss2. The RSS Graffi ti application is confi gurable in
terms of how frequently it checks the RSS feed for updates and the newsfeed header used to preface
each update; most important, you can confi gure if you want to import the entire post or just an
excerpt. If you send excerpts from WordPress to Facebook, then Facebook users will get a whiff of
your content but will have to click through to your WordPress site to savor the whole content disk.
If you’re concerned about splitting your audience, use excerpts; if you’re trying to grow your pres-
ence on multiple social networks, send entire posts upstream.

Buttons, Badges, or Both?

As you can see, there are two equally important goals to sharing content. The fi rst is taking your con-
tent and spreading it out to the social networks, such as Facebook, Twitter, and Pinterest, which has
been covered in this section so far. The second is linking to your own personal profi les on these sites
from your own site, effectively showing the reader what’s on the other side of “Follow me on Twitter”
or “Find us on Facebook” badges you might place in a WordPress widget in one of your sidebars.

c11.indd 292c11.indd 292 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/tweetily-tweet-wordpress-posts-automatically/
http://wordpress.org/extend/plugins/tweetily-tweet-wordpress-posts-automatically/
http://apps.facebook.com/rssgraffiti/
http://apps.facebook.com/rssgraffiti/
http://example.com/feed/rss2

Simple Social Networking Badges ❘ 293

Linking to your social networking profi les from your own site reinforces the idea of using your site
as the hub. It validates your profi les as being truly yours and representative of your online voice.
Connecting these profi les together is a double-edged sword because not only does it certify your
profi les and solidify your online reputation, but it also drives readers from one site to your profi les
or destination at another, potentially fragmenting your audience. Which direction your drive traffi c
goes is a choice you will have to make, which is pretty much the same caution expressed at the out-
set of this chapter.

Validating your community profi les is a great thing if you are using your online presence for a
professional endeavor, whether personally or for as a business entity. It’s advertising how involved
you are and in what capacities. Affi rming your identities from your main site vets those other
online presences like a trust system. This relieves any doubt your visitor may have, and you do
not have to deal with Twitter “Verifi ed Accounts.” And you don’t have to change your name to @
theRealDavidDamstraHonest.

You can link to your profi les pretty easily by editing the template fi les or using an HTML widget. In
general, these links do not change very often, if at all. Nevertheless, some nice plugins handle all of
the hard work for you.

For example, the Social Media Widget plugin (http://wordpress.org/
extend/plugins/social-media-widget/) by Brian Freytag supports many
social media sites. Once installed, drag the widget into the appropriate side-
bar in the control panel. Confi gure the widget using whichever social media
URLs you are publicizing. Figure 11-2 shows an example of the widget.

In addition to all of the built-in social networking sites, this plugin allows
for up to six arbitrarily customized ones and also the ability to use your own
custom icons. It is a nice way to centralize all of your online presences into
one easy-to-manage page.

Many plugins can achieve similar results. Check them out and make your own evaluation.

SIMPLE SOCIAL NETWORKING BADGES

There are two different ways to integrate external social networking sites into your own site,
and they have very different impacts on your content. You want to be able to distinguish between
the two and to be able to decide when you need one over the other.

The fi rst is what is called “simple social networking badges.” These are snapshots of your
 participation in an external site at a specifi c moment in time, and most can be auto-generated by the
destination site (usually behind a button that prompts you to “Add a badge!”) Badge-based content
is ephemeral and changes as frequently as you log activity on the external site. For example, these
badges could be sidebar widgets showing your latest tweet or your current Facebook status.

These simple social networking badges showcase your membership in other social sites, but they
do not contribute to the content on your own site. They are more decorative than substantive, even
if your participation on the other site is extensive. As mentioned previously, if you are much more
active on Twitter, for example, than on updating your blog, then including your Twitter badge may
cause some readers to migrate to your Twitter page to follow your online presence.

FIGURE 11-2: Social

Media Widget

sidebar widget

c11.indd 293c11.indd 293 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/social-media-widget/
http://wordpress.org/extend/plugins/social-media-widget/

294 ❘ CHAPTER 11 CONTENT AGGREGATION

The second possibility is actually to take the content, or a portion of it, from the external location
and republish it on your WordPress site. This gives the content a life of its own, and on your own
terms. Specifi cally, you are not relying on the third party to preserve your content, but are making
your own copy in your own database, making it your personal responsibility to maintain. This is
often called “owning your data.”

Both the snapshot and republishing use cases have value, but you should recognize the difference in
the permanence and longevity of the different approaches. This chapter covers both use cases.

Using social networking badges creates a positive feedback loop around your WordPress site.
Ideally, if you get people following you on Twitter or Facebook, they’re more likely to click through
to your listed website to read your output in longer and larger form. People who read your site may
also want to follow your shorter or unrelated updates on other sites; in both cases you’re relying on
the network effort of “friends of friends” to drive interest in your content.

COLLECTING EXTERNAL CONTENT

You have weighed the pros and cons of integrating external content into your WordPress site. The
next question is how are you going to do it? And which sites are you going to include?

Basically, you can only include sites that have an API to permit the consumption of the data. That is
not entirely true; you could code up a spider that logs into the remote site and harvests the informa-
tion you want, but that would be pretty obscure and not fun to maintain long-term. For the pur-
poses of this book, you are going to focus on exposed APIs.

The basic method to integrate services is to read the API documentation and create a plugin or other
function to consume and convert the information into something WordPress can use, such as a post.
Because the underlying architecture of WordPress is PHP, you can use whatever PHP tricks you
have up your sleeve and code a nice solution. For more information about plugin development, see
Chapter 8. In truth, you do not even have to use PHP; you could use an intermediary language and
interface with the WordPress table directly.

For the sake of this section, you will focus on building a business site that will leverage social net-
works and other websites that provide functionality that can be embedded into your own site to add
value or context. While you could build some these features yourself, the build-versus-buy decision
becomes pretty easy on the open web, when essentially the cost is zero. Sure, there are business con-
siderations about relying on third parties and including third-party code into your own business site,
but at this time in the web’s development, users are more and more informed and aware that this is
how websites work and they accept this functionality.

Starting with WordPress 2.9, WordPress has included functionality for oEmbed. oEmbed is a means
for one website to integrate a code snippet from another. The term “integrate” is used pretty loosely
here because the HTML could be an <iframe> element, but this methodology reduces the steps in
including, for example, a YouTube video in your WordPress post. Check the WordPress codex for a
list of services that are explicitly supported for oEmbed.

c11.indd 294c11.indd 294 12/6/12 1:32 AM12/6/12 1:32 AM

Collecting External Content ❘ 295

Integrating a YouTube Video

Say you have a fabulous new marketing video that you need to include or promote on your
WordPress website. Prior to WordPress 2.9, you had to browse to YouTube and grab the embed code
snippet provided by YouTube and paste it into the code view of the Write Panel on your WordPress
post or page. Honestly, it was not that terribly cumbersome — just a quick copy and paste for most
of us. But average content administrators who are not as well versed in the intricacies of HTML
often struggled.

Because YouTube supports the oEmbed protocol, you can use this feature of WordPress to skip the
entire HTML code snippet process and just use the video URL in your post. The URL should be on
its own line and not hyperlinked, meaning you may have to undo the link with the WYSYWYG edi-
tor in the Write Panel for this to work (see Figure 11-3).

FIGURE 11-3: WordPress write panel with YouTube URL (notice no hyperlink)

When rendering this post to the browser, WordPress will recognize this URL as being oEmbeddable
and will pull the content from YouTube to replace the URL in the content with the actual video, as
shown in Figure 11-4.

c11.indd 295c11.indd 295 12/6/12 1:32 AM12/6/12 1:32 AM

296 ❘ CHAPTER 11 CONTENT AGGREGATION

As if by magic, this transformation takes place. If you inspect the HTML with your developer
tools you will notice that WordPress is using an <iframe> HTML element to show the video from
YouTube. This is ideal because that means the actual video content is being delivered to your
 visitor’s browser directly from YouTube’s servers, which are optimized for streaming media — they
have built a business on it.

Integrating Twitter

Twitter became oEmbed-supported recently with WordPress 3.4. As with YouTube, you can include
a Twitter conversation in a WordPress post or page by putting the URL on a single line and letting
WordPress and oEmbed do the magic. For example, the WordPress post in Figure 11-5 produces the
HTML output in Figure 11-6.

FIGURE 11-4: WordPress post with YouTube video embedded

FIGURE 11-5: WordPress write panel with Twitter URL (notice no hyperlink)

c11.indd 296c11.indd 296 12/6/12 1:32 AM12/6/12 1:32 AM

Collecting External Content ❘ 297

The oEmbed functionality is great if you want to capture a single tweet or snapshot from a third-
party site that supports it. But Twitter has been the poster child for open web service APIs. Is it still
open? The Twitter API is well documented and easy to use once you overcome the authentication
challenges. In addition, it has tons of features. All of this makes integrating your Twitter activities
with your WordPress installation a breeze. As such, there are several things you can do with Twitter
integration. For example, you can show your latest tweets in a sidebar widget; this is an example of
a simple social media badge. You could archive each tweet as its own WordPress post, or get fancier
and have daily or weekly archives. You could grab specifi c tweets and use them in your header to
create a dynamic fi rst impression. Or fi nally, you could reverse the integration and automatically
tweet every time you publish a new blog post.

The Twitter Tools plugin (http://wordpress.org/extend/plugins/twitter-tools/) by Alex
King does almost all of this. And it is all contained in one plugin with a simple control panel so you
can pick and choose how you want to use it. Honestly, this plugin is a pain to set up, but it’s not the
plugin’s fault; it’s related to how Twitter has changed access to the API. In the fi rst edition of this
book, the Twitter API was wide open and integration was a breeze. You could leverage the Twitter
API for countless examples because it was so simple and powerful. Now, Twitter is locking things
down and integration is much more cumbersome. But once you get past the security API confi gura-
tion screens, this plugin has good functionality.

For example, showing your latest tweets in the simple social networking sidebar widget is straight-
forward functionality with this plugin. First, install the plugin on your WordPress site and activate
it. Using the new Twitter Tools dashboard, jump through Twitter’s security procedures to authorize
your new connection. Twitter calls this an app and this is the cumbersome part, but if you follow
the directions, it does work. Next, save your settings and jump over to the Widgets control panel.
You will notice a new widget for Twitter Tools. This widget, by default, will show your last three
tweets. Drag this widget to the appropriate sidebar for your theme to enable it. The benefi t of
this method is that it is simple to implement; turn it on and it’s there. The downside is the transi-
tive nature of this type of integration. You may generate some interest in people to follow you on
Twitter, but it does not provide lasting content for your personal site.

FIGURE 11-6: WordPress HTML output of Twitter oEmbed

c11.indd 297c11.indd 297 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/twitter-tools/

298 ❘ CHAPTER 11 CONTENT AGGREGATION

Twitter Tools can also convert each individual tweet into a post. Depending on how you use Twitter,
this can be a nice way to back up or archive your tweets on your own site. For example, if you use
Twitter to create notes to yourself, having WordPress convert these to posts will give you the simplic-
ity of Twitter, but then include the power of the structured content in WordPress.

An alternative approach is to publish your tweets as you would asides — although, at this point,
you can’t use the post format talked about in Chapter 9 because the plugin does not support it —
intermingled around your regular journal or news posts. Think of asides in the same context as
comments you make in the course of conversation that aren’t related to the main topic at hand. In
this case, because they are originating from Twitter, they would be single-line posts, which would
be ideal for the asides post format if it were available. Simply take the tweets from Twitter and cre-
ate new posts in a special category. Your theme has to handle this special logic to create the right
“asides” feel — shown in a sidebar, or highlighted, to differentiate them from the main narrative of
your blog posts. Once you have the tweets making new posts, this could be as simple as using the
Twenty Eleven theme discussed in Chapter 9 and some specially crafted CSS to make it look like the
aside post format.

If you’re publishing each tweet to its own individual post, Twitter Tools also has the capability
to create daily or weekly digests. This is particularly interesting when you use Twitter to capture
moments of your day through tweets. The challenge with Twitter is how easy it is to use, and yet,
because of the size restriction, you are forced to keep your posts short — hence microblogging. In
this case, you are telling the daily story of your life in a series of small takes. Allowing WordPress
to import them creates another form of the same narrative. It is no different from writing an entire
post entry and publishing it, except this approach self-assembles posts from the microblogging for-
mat used by Twitter.

Another feature of Twitter Tools enables you to reverse the integration — that is, tweet when you
publish a new post. This feature has to be explicitly enabled in the Twitter Tools dashboard. Once
turned on, Twitter Tools will automatically tweet on your behalf that a new post has been published
and will include a link to your article. For some people, this is a nice alternative to RSS syndication,
which you will look at later in the chapter.

Google Maps

Google Maps, or really any mapping service, is a commonly requested item. If, for any reason, you
want clients to actually visit your place of business, or want them to attend a certain event, you need
to provide directions. Online mapping and direction services such as Google Maps are ubiquitous
for this now. It is hard to remember how you found your way around town before, but at the same
time, you now have the social benefi t of location-aware services.

Anyway, you want to add a map to your site. Google provides a nice mechanism to simply embed
a map in your site using its tools. You can fi nd this in the top right of the Google Maps page. Copy
the code and paste it into your WordPress post or page. It is that simple and it works.

Google Maps seems like a prime candidate for oEmbed functionality, but it is not supported. So for
now, going back to the old-school copy-and-paste is the most straightforward way to embed a single
map into your WordPress website.

c11.indd 298c11.indd 298 12/6/12 1:32 AM12/6/12 1:32 AM

Collecting External Content ❘ 299

Like Twitter, Google Maps has an extensive API and there are many WordPress plugins that offer
different map features or functionality, such as placing multiple markers on the same map, embed-
ding multiple maps into the same post, or providing an HTML user interface for your site adminis-
tration. Depending on your or your clients’ needs, one of these may fi t the bill.

Integrating Facebook

Facebook is the new walled garden of online communities. Various roads exist into Facebook, but
very few to get data out. This makes integrating your WordPress site with Facebook somewhat more
of a challenge. Until recently, Automattic and Facebook worked together to create a plugin specifi -
cally for WordPress and Facebook to integrate together, available online at http://wordpress.
org/extend/plugins/facebook/.

This plugin aims to deeply integrate your Facebook network with your WordPress site. Similar to
Twitter, you have to register a Facebook App with Facebook to use this plugin. This can be a cum-
bersome process to get the integration working. There was a lot of trouble with Facebook’s
CAPTCHAS, but this seems like the way things are headed in order to use third-party APIs. Again,
follow the directions on the WordPress plugin page carefully and it works.

Once the authentication and setup rigmarole is complete, you will have a control panel to confi gure
how much integration you want to enable. There are several components to choose from and each
has some display confi guration options. One of the more interesting components of this plugin is the
ability for the comments to be aggregated as Facebook comments.

Facebook is currently the big gorilla of social networks. Being the biggest and most popular means
that people complain about it and stop using it, but the truth is, being so popular means that that is
where the audience is. Integrating your site with Facebook is a trade-off between reaching potential
viewers and adhering to their terms and practices.

Generic XML Data

Now that you have looked at some of the biggest and most common integration points, let’s take a
look at a simple example for integrating a generic XML data source into your WordPress site. This
could be any generic content source or custom source you might have. In this example, you will look
at XML, but it could be JSON or any other agreed upon fi le format. What you’ll do here is take an
XML formatted feed and consume it using PHP code. In this example, you are using an external
data source to provide some confi guration and content information to your WordPress site. This
might be the case where you are using WordPress to create an external marketing website for your
client, but they are using an internal application to actually manage the business. That is, the client
uses their internal application to set some content or criteria, and you have created an interface to
broadcast that criteria via XML. Your WordPress site picks up that XML data and uses it to cus-
tomize the WordPress site. This makes it so the business has to manage data in one place only.

This example is going to be a little contrived. As with most things, there are many ways to accom-
plish this and depending on your circumstances, this may not be the easiest or most straightforward.
You might even think: Why not just use the WordPress content management functionality to man-
age this data? While potentially unrealistic, this example showcases integration principles that can

c11.indd 299c11.indd 299 12/6/12 1:32 AM12/6/12 1:32 AM

http://wordpress.org/extend/plugins/facebook/
http://wordpress.org/extend/plugins/facebook/

300 ❘ CHAPTER 11 CONTENT AGGREGATION

be used and are used in real-life situations. This example is adapted and simplifi ed from an existing
process used in production.

Pretend that you just signed an Umbrella retailer as a new client. The CEO of your client company
is adamant that, to keep the website looking fresh, he wants to match the background color of the
website to the color of the week. The color of the week is also the color of the umbrella that is on
sale this week. The CEO picks the color of the week on Mondays and keys it into the point-of-sale
system so all the sales people know which color is on sale. The CEO does not want to have to worry
about the website, but wants the color to match. As mentioned previously, there are many ways to
accomplish this. But when you talked to the company’s system administrator, he mentioned that the
color of the week was exposed in a REST API. Again, while the example is constrained and the con-
text is carefully set up for this example, increasingly resource content and real-time data are exposed
via RESTful APIs, and knowing how to extract data from those endpoints will give you a richer set
of external data sources with which to customize WordPress. This chapter is about aggregating and
consuming content, so this is the perfect opportunity to leverage your newfound knowledge and take
the data feed and modify the website on the fl y.

Here is your plan of attack. First, you are going to create a function in your theme’s functions.php
fi le that will retrieve the API data, parse it, and hand it off to the theme rendering. This code could
just as easily be a plugin or even included in the header.php template fi le. For this example, it just
needs to happen on every page load. (This is not ideal, so more on this in the next section.)

In the functions.php fi le, you will create a new function called get_color_of_the_week() , and
the code might look something like this:

function get_color_of_the_week() {
 $feed = file_get_contents('whatever URL');
 if ($feed) {
 $xml = simplexml_object($feed);
 $color = $xml->color;
 } else {
 $color="white";
 }
 echo $color;
}

This function uses the PHP function file_get_contents() to get the XML from the point of sales’
exposed API. The data is then converted to an XML object, although you could do the same thing
with JSON or other data formats. Then the variable for the color is set based on the content of the
XML payload. It’s pretty straightforward.

Next you need to use this color as the background color of your HTML <body> element. In your
header.php template, you might do the following:

<body <?php body_class(); ?> style="background-color: <?php echo
get_color_of_the_week();?>" >

This will use an inline style to override any CSS from the style sheet. This code also has to happen
inline because you are using PHP to echo the contents of the XML. This methodology is similar to
the way the built-in WordPress Theme Customizer discussed in Chapter 9 works.

c11.indd 300c11.indd 300 12/6/12 1:32 AM12/6/12 1:32 AM

Collecting External Content ❘ 301

This method will only work if the CEO types in something that is recognized as an HTML color,
whether a hex code such as #fffff or a named color such as Papaya Whip. Certainly, the preceding
code could use some error checking and handling.

Think beyond this simplistic example. This same principle could be applied to any number of unique
possibilities, including site customization from a third-party system, as shown here. But it could also
be content that is parsed and handled in a specifi c format, perhaps loan rates or other business sub-
ject matter.

As you have probably put together, the preceding example is not very effi cient. Every request to
every page makes a call to the REST API to fi nd the background color. Depending on network con-
gestion or many other factors, this could be a time-consuming prospect that dramatically affects the
load time of your site. Time to load is a large component of the user experience, as discussed later in
Chapter 12. In addition, because this information changes only once a week, why ask for it on every
page request? Why not remember it, or cache it for the week. This is where WordPress transients
come in.

Transients

Transients are very similar to the WordPress Options feature discussed with plugins in Chapter 8.
The major difference is that transients include an expiry time. By their very nature, they are only
available for a defi ned period of time — you can think of this as though they are self-refreshing or
self-updating. This makes them ideal for caching “expensive” data for a defi ned period of time.

What is expensive? Expensive data is data that takes longer to retrieve or calculate. In the previ-
ous section, and in the upcoming example, you will look at how accessing a third-party API could
be considered expensive, depending on network latency, most importantly you do not want your
site rendering to have to wait for a third-party access. However, it could also be a computationally
intense query or calculation — for example, generating a complex menu for your site, or a query that
spans a whole network of sites on MultiSite. What you are doing here is caching some data for quick
retrieval, which is to say, having the information at WordPress’s fi ngertips.

What is a defi ned period of time? Here is the rub: you have to balance having data readily available
but without it becoming stale. In the previous section, you manufactured a situation where the time
the data remains current is clearly defi ned: one week. In the real world, you may never know how
often the data gets updated or needs to be refreshed. In fact, to further complicate this, there could
be many levels of caching on your WordPress site. Caching is covered in greater depth in Chapter
13, but just consider the interactions between the various places in which data can be cached.

The source of your data might have caching, or be delayed in presenting the internal information to
the API for you to consume. Your transient data has a caching expiration on it and your WordPress
HTML rendering might have a caching mechanism. Your visitor has browser caching and possibly
even network-level proxy caching. This means that there are many factors that could affect the
pipeline of getting data from an offsite source to your visitor’s browser. This can be a big, and some-
times frustrating, factor when developing and testing your integration but it also affects the time
period you select for storing your transient data.

So what is the defi ned period of time? It depends. It depends on your data, your tolerance for stale
data or requirements for up-to-date information, and the load on your site. In the previous section,

c11.indd 301c11.indd 301 12/6/12 1:32 AM12/6/12 1:32 AM

302 ❘ CHAPTER 11 CONTENT AGGREGATION

where you did not want to access the API on every page load, this did provide the freshest, most
current data. But it also put a load time restraint on your theme, and also an access load on the API
server. Transients are designed to reduce or remove both of these conditions. As the developer, you
have to set the expiration time to balance expectations of current data while reducing the access
load on the third-party service. Your goal is to fi nd the longest time period during which old or stale
data will not produce an adverse user experience. To borrow from the world of non-SQL databases,
you need to determine how you’ll make the data eventually consistent, without introducing errors in
user action due to inconsistent, cached data.

Use the same example as the previous section, but introduce transients to locally cache the informa-
tion. In your functions.php fi le, you will modify the function to include the transient storage. The
fi rst thing to do is check if you already have any existing, non-expired data. If your transient data
does not exist, or is expired, the get_transient() function will return false.

if (($color = get_transient('color_of_the_week')) === false) {

If this check returns false, that means you need to access the API and get new data. Again, this
caching is separate from any HTML- or PHP-level caching your site is performing. This check is
directly related to this specifi c piece of information. The following is the same code as the previous
example:

$feed = file_get_contents('whatever URL');
if ($feed) {
 $xml = simplexml_object($feed);
 $color = $xml->color;

Now that you have the updated data, you need to store it in the transient and set the expiration
time. This essentially works the same as the WordPress options API with the added expiration
parameter.

set_transient('color_of_the_week', $color, 60*60*24*7);

For readability, you are presenting the expiration time as a calculation. WordPress expects this
parameter in seconds. In your example, you want to hold this data for one week, so the calculation
is 60 seconds times 60 minutes times 24 hours times 7 days giving us a week’s worth of seconds.
You could also push 604,800 as the second parameter, but often it is easier to read the intent of the
time with the calculation.

Putting it all together, the new function with transient caching might look like this:

function get_color_of_the_week() {
 if (($color = get_transient('color_of_the_week')) === false) {
 $feed = file_get_contents('whatever URL');
 if ($feed) {
 $xml = simplexml_object($feed);
 $color = $xml->color;
 } else {
 $color="white";

c11.indd 302c11.indd 302 12/6/12 1:32 AM12/6/12 1:32 AM

Advertising ❘ 303

 }
 set_transient('color_of_the_week', $color, 60*60*24*7);
 }
 echo $color;
}

Finally, to use this color in your HTML, the changes are exactly the same as in the previous section.
All of the new caching magic is encapsulated in the function from the previous code snippet. Your
header.php template changes should look like this:

<body <?php body_class(); ?> style="background-color: <?php echo
get_color_of_the_week();?>" >

As you can see, by adding two simple lines of code to your custom feature, you have now added
caching functionality to reduce load time on your site, removed reliance on a third-party connection
(during the caching period) and decreased the access load on that third-party server. It’s a pretty
simple process and can drastically affect your site performance for data that does not have to be
immediately current.

ADVERTISING

When using your website to sell a product or service, or gain potential customers for your business,
your WordPress installation is more overhead than profi t center. On the other hand, personal jour-
nals or blogs with large readerships often drive nontrivial advertising rates, picking up the online
equivalent of local or national newspaper display ads. In this section, you look at various aspects of
the money game, from confi guring ad boxes to becoming an affi liate merchant site.

If you’re wondering what this section is doing in the middle of a content aggregation discussion, it’s
here because advertising is a syndication issue. You’re either taking someone else’s idea of an attrac-
tive, keyword-specifi c ad and placing it in your content stream, or you are putting your own ads into
someone else’s display slots. Just as it is important to consider audience fragmentation and multiple
or parallel channels for your readers, you also need to think about the impact of your site’s display
advertisement on the visual and user experiences.

Monetizing Your Site

There are a number of ways to monetize your WordPress site: display ads from one of the larger
online advertising agencies such as Google become an affi liate of an online merchant such as
Amazon that offers commissions on click-throughs that result in product sales, or sell specifi c spon-
sorship or banner space on your site to an interested party. When you go down the commercial
route, however, you are also making an explicit decision to cede some of the design and display
value of your site over to a third party. For a personal site, or a blogger, this is usually fi ne. For a
commercial site, this is probably a non-starter. There is also that vast middle ground where your
personal hobby is really a business — think of comic strip sites and larger scale personal op-ed sites.

Passive monetization of your content is nice, and some truly popular websites do throw off enough
advertising revenue to fund small companies, but for the average blogger, advertising is going to

c11.indd 303c11.indd 303 12/6/12 1:32 AM12/6/12 1:32 AM

304 ❘ CHAPTER 11 CONTENT AGGREGATION

be more about catching an occasional click-through. It’s critical to have reasonable expectations
of how much advertising revenue your blog can generate, because you’re trading off aesthetics and
display space for advertisement placements, with little control over the products and graphics styles
represented.

Advertising monetization ranges from the pay-per-click model, where you get paid each time a
viewer clicks on a displayed ad, to the pay-per-view or pay-per-day model, where you earn income
for simply displaying the ad or placing an ad on your site for some specifi ed time period. Google
AdSense fi ts the fi rst model, where Google’s ad syndication service establishes a price per click
based on keywords and content, and then matches available advertisers to available slots based on
Google’s defi ned market pricing and advertiser budgets. Project Wonderful is an example of the pay-
per-day model, where you offer predefi ned ad boxes to potential advertisers, and Project Wonderful
runs a continuous auction for each day of display. You get the same income whether or not anyone
clicks on the ads.

In all models, the value of advertising slots offered on your WordPress site is proportional to the
popularity of your site and the probability of a view or click-through. If you do not have a variety
of content that’s regularly updated, your ads will tend to cluster in the equivalent of late-night local
cable television commercials. Similarly, if the thought of a weight-loss ad sitting under your post dis-
cussing the “fat tone” of a jazz guitarist’s solo offends your sensibilities or detracts from the serious-
ness of your musical musings, consider passive monetization of your site using an affi liate or referral
program such as Amazon Associates that pays you a fee for each referred purchaser. Furthermore,
with ad networks gaining more insight into where visitors browse and what they are shopping for,
ads are more and more tailored to the specifi c visitor. This means that the ads you see are not the
ads that someone else sees.

Compounding these issues is the path users take to fi nd your content; advertising is carried on your
hosted WordPress site, but not in content republished through Facebook or aggregated on other
sites. If your site is read through an RSS feed, make sure you consider choosing an advertising man-
ager that places ads in feeds as well as in the generated HTML for your content.

Setting Up Advertising

Placing advertising on your site is no different than laying out a print page with a mix of editorial
and commercial content: decide how many ads you want, where they are going to be placed, and
what potential content confl icts you want to avoid. This is as much a design as a technical process,
because you have to pay attention to the eventual page presentation and tone of the content when
displayed with advertisements.

Using Advertising Plugins

Before running ads on your site, you need to create an account with one of the popular ad syndica-
tion services. Generally, this means that you have to create a login, describe your site, demonstrate
some minimum competence in terms of content, and provide payment information. In return,
you get an advertising client identifi er, and usually a slot (or ad) identifi er. If you’re using Google
AdSense, for example, you can create multiple channels for your advertising slots, perhaps tying
different channels to different categories or parts of your site, or using one channel for each of sev-
eral different sites you manage. The client identifi er is tied to you as a payment entity; the channels

c11.indd 304c11.indd 304 12/6/12 1:32 AM12/6/12 1:32 AM

Advertising ❘ 305

describe different display destinations for ads and may be wildly different in terms of their content,
size, shape, and going click-through rates.

There are many different WordPress plugins for managing your advertising relationships and their
impact on your site. Finding the right one for you and your ad network is left as an exercise for the
reader. Just make sure you read the disclaimers carefully. Some plugins will show several of your
ads, and then interject one from their own ad network to offset their development costs. Make sure
you know what you are signing up for.

Usually after installing the plugin, confi guration is as simple as choosing the ad service, copying
your account and slot information into the control panel, and choosing the display specifi cs to gov-
ern the size and shape of ad boxes.

If you want to exert explicit control over what is being advertised on your site, rather than handing
that option off to an ad syndication network, you can take over the advertising management and
manage it manually. There are some plugins to help with this also because with WordPress there is
a plugin for everything. If you want to set up site sponsorships, where someone pays you for a spot
that shows up in the header, footer, or sidebar, or you want to sell simple display ads that rotate
through the site using your own rate card and payment schedule, doing it manually gives you the
most control over the insertion of ads into your site.

Manual Advertising Placement

The advertising plugins work very well if you want to attach ads to each post or have them show up
in the header or footer of every page. The plugin architecture covered in Chapter 8 handles fi ltering
of post code to replace the smart codes with a JavaScript template to call your advertising service,
or inserts the appropriate script in the theme’s content fi les. If you’d like fi ner grain control over ad
placement, such as more tightly integrating the ads into some theme elements, then you’ll need to
hand-edit the appropriate fi les and insert the advertising script code.

You won’t go through every permutation of editing theme fi les to insert ad boxes, as this effort is a
derivative of the theme creation discussion in Chapter 9. In general, if you’re adding an advertising
box to your header or footer, then it’s going to go just below the last <div> in the fi le so as not to
interfere with other theme elements. In a sidebar, the ad box should be a separate list element, with
the ad box code surrounded by and HTML tags.

The manual insertion process is not much different than adding a Facebook badge or Twitter icon
to your sidebar, as the ad box code is automatically generated by your advertising manager site. For
example, if you are using Google AdSense, the control and confi guration pages for AdSense enable
you to choose the shape of the ad (rectangular or square), the size of the display box, and the color
scheme used. The fi nal step in the ad confi guration shows you a small chunk of JavaScript that you
copy and paste into your WordPress fi le. In the example code snippet, the Google ad client and ad
slot identifi ers have been blocked out, but you can see the relative simplicity of the ad display pro-
cess. The script calls Google’s ad syndication engine with information about the destination (your
ad client information), the size, and a slot identifi er that Google uses to account for ad displays in
terms of different “channels” that you set up within their confi guration system:

<script type="text/javascript"><!--
google_ad_client = "ca-pub-7723xxxxxxxxxxxxxxx";
/* adsense-button */

c11.indd 305c11.indd 305 12/6/12 1:32 AM12/6/12 1:32 AM

306 ❘ CHAPTER 11 CONTENT AGGREGATION

google_ad_slot = "747xxxxxxxxx";
google_ad_width = 125;
google_ad_height = 125;
//-->
</script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script>

Note that the variables defi ned in the JavaScript are exactly the same values you would have entered
in an AdSense plugin. The other somewhat obvious point is that every time you display a Google ad,
you’re calling Google’s syndication service to decide which ad to insert and waiting for it to return
the image and text. This has a nominal impact on your site’s perceived performance, unless Google
is particularly taxed and your site display is slowed by the advertising generation. Hand-editing and
insertion of ad boxes from other services is equally simple. Project Wonderful’s JavaScript code is
even more compact.

Where you put the ads and their shape and style are codependent. If you are going to add a stack of
ad boxes to your sidebar, then a single column of ad boxes with multiple rows is best; ensure that
the width of the ads fi ts within the sidebar width used by your theme. Opt for a header or footer
approach and a single row of multiple ad slots, or a short multi-row matrix, whichever fi ts best. The
size of your advertising box also governs what type of ads fi t within it: leaderboard ads that span the
entire width of the display page won’t work in a sidebar, and are least visually diffi cult when there’s
only one per ad box. Project Wonderful lets you defi ne multiple ad boxes per site, so if you want to
mix and match ads of different geometries, consider wide, single-row boxes for headers and footers
and the skyscraper or tall matrix approach for stacks of buttons or square ads in sidebars or under
blog posts.

Dealing with Confl ict

Confl ict between commercial and editorial content probably dates back to the fi rst newspaper that
carried advertising. Within the context of this book, you’ll only look at two potential types of con-
fl icts: ads you don’t want in your space, and advertising platforms that don’t want others in their
space.

Undesirable ads run the gamut from unrelated products to things that you fi nd offensive. Part of the
issue is how the advertising managers decide to match ad campaigns to available advertising slots:
keywords and context from the content itself are matched against those keywords that the ad cam-
paign chooses. If you fi nd yourself writing about food, eating, and the resulting weight gain, per-
haps in an off-hand manner, don’t be surprised if the weight loss ads start showing up under your
posts. Perhaps your best defense here is a good offense: write regularly, keep your site dynamic and
updated, and use tags and the search engine optimization techniques discussed in Chapter 12 to best
present your content to advertising managers.

All media vehicles that carry advertising have their own standards of business conduct, such as not
running two commercials for competing businesses in the same advertising break. Online advertis-
ing services impose their own terms of service on their channels, typically limiting the number of
ads that can be placed per page, the types of pages in which ads can appear (not in e-mail, or not
on pages that encourage viewers to click away in a thinly veiled click fraud scheme). When you use

c11.indd 306c11.indd 306 12/6/12 1:32 AM12/6/12 1:32 AM

http://pagead2.googlesyndication.com/pagead/show_ads.js

Privacy and History ❘ 307

Google AdSense, you are free to display other ads on your site, provided they are differentiated in
color and style to avoid confusion with Google’s displayed ads. On the Google AdSense confi gura-
tion page, pick a color palette for those ads that is distinct from that used by your theme, and then
whatever ad slots your theme controls will have distinct borders and backgrounds. If your theme has
a widget or slot earmarked for advertising, use that for self-hosted, sponsorship, or rotating banner
type ads, and let Google AdSense manage the per-post or per-page boxes, being careful not to mix
different advertising platforms in the same part of your display page where they could be confused.

Advertising has been a part of public visual media since the dawn of television and highway bill-
boards. As a site administrator, developer, and content creator, you need to decide how and where
you want to commercialize your work, and if the aesthetic and editorial efforts are worth the poten-
tial fi nancial return.

PRIVACY AND HISTORY

Whether you are creating a business site or a personal site, aggregating your various online interac-
tions into your WordPress site creates the benefi t of one true source of your online presence. This
makes it easier for your clients, potential clients, family, or random admirers to track what is cur-
rently happening with you.

However, you might not want to cross the streams, so to speak, for a number of reasons. The obvi-
ous reason is the complete opposite of the reasons why you would want to aggregate all your social
media content — privacy. The main reason for bringing it all together is for discoverability and get-
ting noticed. What makes you discoverable, however, is putting it all out there. Sometimes, for your
personal information, this is not what you want.

Privacy should be a concern for anyone publishing information on the Internet. Google caches any-
thing it can fi nd; so does the Internet Archive. There is not anything nefarious about that, but just
be aware that once it is out there and discoverable, it is potentially always out there. There is no
“Are you sure?” button to click. To quote an old Usenet warning:

This program posts news to thousands of machines throughout the entire
civilized world. Your message will cost the net hundreds if not thousands of
dollars to send everywhere. Please be sure you know what you are doing. Are you
absolutely sure that you want to do this?

While the actual fi nancial impact may not be true anymore, if it ever was, you can understand that
the concern about “no going back” has been around a long time on the Internet. The short story
is to take a deep breath before you publish something into the ether, because you do not know its
life span. Once you say it on the Internet, it is said forever. We don’t yet know how kids are going
to react when they realize their entire life from birth to this afternoon has been permanently docu-
mented on Twitter, Facebook, and personal websites. Long term, it could potentially be far more
embarrassing than that picture of you in the bathtub as a baby.

When putting it all out there, you have to be careful. You hear stories about employees being fi red
because of Facebook — they call in sick and then post stories on their Facebook page about playing

c11.indd 307c11.indd 307 12/6/12 1:32 AM12/6/12 1:32 AM

308 ❘ CHAPTER 11 CONTENT AGGREGATION

hooky and fooling the boss. Posting inappropriate pictures on Flickr can have a lasting effect on
your reputation. Within fi ve minutes of interviewing potential new employees and reading their
resumes, many human resources specialists are on search engines and social media sites looking
for information about them. Often, you can fi nd details that you are not allowed to ask about in a
 traditional interview. It is an augmented background check of sorts.

For better or worse, aggregating all this content onto your WordPress sites makes it all public and
easily accessible, and a well-managed online persona can enhance your business brand or personal
reputation. Finally, collecting all of your online information in a central location can enhance the
user experience and build trust at the fi rst impression.

SUMMARY

This chapter covered a range of topics focused on empowering your WordPress site to participate
more with other aspects of the Internet, including pushing your content to other sources and focus-
ing on bringing external content into you site. Third-party content could be actual copy or com-
ments but could also be services that enhance your client experience or confi guration information
for your site. Third-party content was also presented as advertising that might help monetize your
site. This chapter also discussed some of the implications of fracturing your audience amongst the
various locations on the web. The next chapter will focus on how you take your content and craft a
meaningful User Experience.

c11.indd 308c11.indd 308 12/6/12 1:32 AM12/6/12 1:32 AM

Crafting a User Experience

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the principles of the user experience

 ➤ Learning the benefi ts of usability and usability testing

 ➤ Recognizing how to optimize your site for search engines

 ➤ Improving the built-in WordPress search

The last few chapters have been about creating and presenting your great content to the user.
In truth, those chapters are really about your own goals — how you want the site to look and
function and what content you are presenting. But it is not all about you. What about the
 visitors to your site? This is where the user’s experience is a factor.

Up to this point, the focus has been on how to create a site and manage its content. Now the
question is — is the site going to attract and retain viewers (users) because of the mechanics
and decisions you have put in place? Because you are dealing with people and their unique
perceptions, it is an entirely nondeterministic exercise. That is, beauty is in the eye of the
beholder.

The user experience really involves more than what an actual person sitting at a browser in
Middle America thinks. Indirectly, web spiders, search engines, and service consumers such
as RSS readers are also your users. Your site needs to be designed and structured so that all
classes of users benefi t and have a great experience.

USER EXPERIENCE PRINCIPLES

User experience is a topic that is open to interpretation; everyone sees it a little differently. But
some good guidelines are available. Some of these guidelines are common sense, or seem to be.
They all strive to establish a balance between what is aesthetically pleasing but also practical.

12

c12.indd 309c12.indd 309 12/6/12 1:23 AM12/6/12 1:23 AM

310 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

These are not hard-and-fast decrees that must be followed. Humans are fi ckle and these guidelines
need to fl ex to meet their needs.

Here are some basic questions to ask:

 ➤ Does my site have a consistent look?

 ➤ Is the design helpful or hurtful?

 ➤ Is my content easy to fi nd and access?

 ➤ Is my content well structured?

 ➤ Is my site reasonably quick to load?

This list itemizes the pillars of the user experience. How you choose to use them, or in what
 combination, is really what this chapter is about. The following sections delve into these topics for a
little more clarity.

Consistent Navigation

This is almost a no-brainer these days; it is diffi cult to not have a consistent look and feel with
WordPress themes. You want your visitors to be aware that they are consistently using your site,
independently of the path taken to get there. That means having a coherent look and feel to your
site — such as a masthead and dependable global navigation.

That does not mean that different sections cannot have their own fl air, but it needs to be coherent.
It will be very disorienting for a visitor to read some of your content on one page and then click
through to the next page with a totally different look and feel to it. Visitors will think they have left
your site and you will not get credit for the great content you have created.

Likewise, each page in your site should have a dependable global navigation. Dependable means it
does not change and does not move. Visitors should be able to explore your content without fear
of getting lost. It may sound silly to a technologist like you, but the average user has a different
relationship with technology. This global navigation is a safety line for your visitors to get back to
where they came from.

Good global navigation also tells visitors where they are in the site. Specifi cally, setting an “active”
item in the menu and making it clear that it is lit up, or somehow distinguished from the rest of the
global navigation. This enables a visitor to glance at the navigation and immediately see where he
is in your site with respect to the other sections or pages. The built-in menu system in WordPress
does this automatically; you will automatically receive a current_menu_item class in your currently
active menu items like so (this is the rendered HTML):

<li id="menu-item-44" class="menu-item menu-item-type-post_type
 menu-item-object-page current-menu-item page_item
 page-item-42 current_page_item menu-item-44">

c12.indd 310c12.indd 310 12/6/12 1:23 AM12/6/12 1:23 AM

User Experience Principles ❘ 311

 Register Me

Alternatively, if you are creating navigation yourself using WordPress’s built-in is_page() function,
you can achieve the same result (this is the PHP code in the template fi le):

<li class="benefits
 <?php if(is_page('benefits')) { echo "current_menu_item";}?>">

 Benefits

In both cases, some nice CSS on the current_menu_item class would differentiate this menu item
from the rest. We (the authors) are fi rm believers in the user feedback functions of the anchor ele-
ment. First, mousing over the element should provide some sort of feedback beyond switching the
cursor to a hand. Usually, this means a highlight or darkening of the font, background, or border.
Second, the currently active navigation section should be similarly delineated, but different. These
two tenets, when taken together, create a nice global navigation that visually presents a multitude
of information on where the visitor is in relation to the rest of the site and where he can go to read
more. Some sample CSS adapted from the Twenty Eleven theme might be:

#access li:hover > a,
#access ul ul :hover > a,
#access a:focus {
 background: #5B84BA;
}

#access .current-menu-item > a,
#access .current-menu-ancestor > a,
#access .current_page_item > a,
#access .current_page_ancestor > a {
 font-weight: bold;
 background: #5B84BA;
 color: #efefef;
}

This works in Chrome, Firefox, and Internet Explorer 6 through 9. In Figure 12-1, you can see how
this plays out in the web browser. If you browsed this site in real life, you would see that the global
navigation across the top is in the same place on each and every page of this test website. You will
also notice that this screenshot is of the Child Page of the Sample Page menu item, and that naviga-
tion item is visibly different from the other menu items to indicate that it is the active page, and also
the active top-level navigation item.

c12.indd 311c12.indd 311 12/6/12 1:23 AM12/6/12 1:23 AM

312 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Notice that it is referred to as global navigation. That does not mean that every page in your site has
to be listed in the main menu. It can be, but it does not have to be. Sections can have a local naviga-
tion block once you are inside them, but the main sections should be accessible via the main menu.
This is what makes navigation dependable. It reinforces what the visitor can expect on your site and
the methods used to navigate it.

A consistent style and dependable navigation comfort your visitor and reinforce the validity of your
content.

Visual Design Elements

Specifi cally, are the visual assets of your site helpful or distracting to the user? Does the theme rein-
force the persona you are portraying with your content or detract from it? This is another one of
those topics that are open to personal interpretation. Photos and colors trigger differing subjective
responses from different people, but the overall impression of your site should match the general
content.

For example, a business site should not have a bubble-gum pink theme if it wants to be taken
seriously — unless, of course, the site is selling toys or bubble gum. At the other extreme, there
has recently been a bit of backlash against the use of pink to denote sites or content addressing
women’s health issues; overuse degrades its impact and importance if blindly applied. Visual
design should refl ect the brand and brand values you are trying to develop with your
WordPress site.

FIGURE 12-1: Active navigation

c12.indd 312c12.indd 312 12/6/12 1:23 AM12/6/12 1:23 AM

User Experience Principles ❘ 313

Colors evoke different feelings. Blue instills trust, which is why it is so prevalent in business and
fi nancial logos. Orange suggests new technology and is often used in the telecom industry. Color and
branding is a whole topic unto itself, but just consider that pink ponies may not be the way to market
your bank, and skulls and crossbones may not be the way to market your children’s furniture site.

This topic is pretty diffi cult to gauge. It is a very emotional topic and often marketing takes over
rather than commonsense. For example, it is likely that many of you have worked for clients who
were absolutely certain that each new addition to the index page will be the most important thing
on the page. That meant that every design element was oversized and blinking, causing the whole
page to become nausea inducing. Sort of along the same lines as laundry detergent: if every brand is
ultra-new-super-improved, are they not really all the same again?

One design theory that that works well when working up a new mockup is to toil away at the com-
position. Build up layers of elements working toward the end goal. Once you are happy with what
you think could be the fi nal mockup, remove an element. Kick it back one rung and use that. This is
a variation on the less-is-more approach.

Take, for example, the mockup being created in Adobe Photoshop in Figure 12-2. You will notice
in the Layers palette on the right side that all the components that make up the mockup are broken
into individual layer groups. During the development of this mockup, each graphic element was
composed using this method, which means that you can easily move and change them without
 interfering with other layers. You will also notice that a couple of the layer groups are currently
turned off: The little eyeball icon is not there next to them. When creating this mockup, both of the
graphic elements in those layers were tried and deemed to be too much. Turning them off, kicking it
back a notch, created a stronger layout.

FIGURE 12-2: Mockup being created in Photoshop

c12.indd 313c12.indd 313 12/6/12 1:23 AM12/6/12 1:23 AM

314 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Making Content Easy to Find

With a successful site, you will reach a point where you have a substantial body of content. Often, the
visitor to your site does not categorize or organize content mentally in exactly the same manner as you
do. Therefore, there should be multiple paths to get to all content in your site. This increases the likeli-
hood that visitors will be able to fi nd what they are looking for. This is also an excellent reason for
having categories, tags, and calendar-based archives templates. Having these templates addresses three
popular ways in which people remember where something was. They also serve as a way to drive more
content interaction and consumption, exposing your thoughts (as the creator) on content sorting.

WordPress assists in this strategy right out of the box. First and foremost, your site should have a
dependable global navigation, as mentioned previously. WordPress encourages this with its native
structure, but how you actually build and organize the navigation is up to you.

Second, WordPress does come with a built-in search functionality. Although it can be improved, as
discussed later in this chapter, some search is better than no search. Tagging your content helps with
search.

Third, WordPress offers many alternative views of the content. Either with special templates or by
simply using the default index template fi le (see Chapter 9, “Theme Development,” for more infor-
mation on template fi les), WordPress can offer up your content by date, category, title, or author,
or through several other variations. Creative use of these templates and other custom loops offers
another vector into your content. The catch here is that this method also serves duplicate content,
which the search engines discourage, but that is covered later in this chapter.

Fourth, many plugins are available for related posts. Adding a related posts list to the bottom of a post
is another method for providing a deeper dive into your content. This is particularly effective if you
have already piqued the interest of your reader with one set of content. Offering similar content is a
great idea, and it is a way to provide more information on the subject that can be useful to your visitor.

Site Load Times

Back when dial-up was the most prevalent means of connection, web developers were extremely con-
scientious about the weight of the page and how long it took to load. But as broadband access has
increased, developers have become lax about load times when updating existing sites. CSS fi les have
bloomed as new selectors and styles are added rather than merged with existing styles. AJAX and
JavaScript libraries have been included, sometimes more than one JavaScript library, just to achieve
neat-o gee-whiz effects. iFrames, web services, and other third-party components all add to the
bloat of an HTML document. Multiple database queries to gather information slow down the page
on the server side.

In addition, elaborate new designs require more CSS and images and other effects, which adds to the
bandwidth infl ation. This is a problem for both new greenfi eld development and with the mainte-
nance of legacy designs.

Is the time to load still a factor to consider? It should be. The fact that the access speeds are faster
does not mean you should ignore optimizations in the code. However, never optimize too early in
the process. Premature optimization slows down the development and deployment of your site. This
is a delicate balance between getting things done and out the door and optimizing them

c12.indd 314c12.indd 314 12/6/12 1:23 AM12/6/12 1:23 AM

User Experience Principles ❘ 315

so the launch is successful. Page load times should be a consideration when developing your site.
A nicely optimized site loads much quicker than one that was put together by someone who does not
 understand the implications.

This can be a complex issue: think about all the aspects that affect load times of your website. There
are the obvious ones that you should be familiar with, including the quantity and sizes of images, the
number of JavaScript libraries being used, and to what effect those JavaScript libraries are being used.
Consider also your integrations with third-party sites, such as using a few too many Facebook badges
with Status and Like updates, or multiple hotlinked images from image hosting sites. What happens
when these remote locations are slow to respond, or worse, do not respond at all? Does your site’s
response time suffer because of something outside your control? Think about the tree of performance
dependencies that you create by referencing other sites. That does not mean that you shouldn’t use
them at all, but that you should recognize how they can affect your own site’s performance.

Firebug continues to be an excellent tool for working through optimizations and network
 bandwidth on your site. Google Chrome’s Developer Tools is also a very popular choice. In addition,
Yahoo! and Google each have add-ons for Firebug and Chrome Developer tools to help improve
your page speed: YSlow (http://developer.yahoo.com/yslow/) and Page Speed (http://code
.google.com/speed/page-speed/), respectively.

A caveat with YSlow and Page Speed is that they are provided by Internet power houses. These sites
likely see more traffi c in an hour than you see all year. The problems and speed issues that they need
to address are not the same types of issues that you need to address. YSlow always recommends
a Content Delivery Network (CDN). Sure, a CDN distributes your assets across a geographically
diverse set of servers to increase reliability and reduce latency, but does your site really need this? Do
you really need to incur the costs? It is a developer choice, but in short, just remember that your site
is probably not on the same scale as Yahoo! or Google.

You need to pick and choose your battles in the area of site load times. Here’s a quick checklist of
things to consider, starting with the low-hanging fruit:

 ➤ Optimize your graphics and pick the right DPI, color depth, and format. Don’t forget about
higher DPI Apple and other mobile devices.

 ➤ Standardize your JavaScript library and use only one. Measure the benefi ts of packing and
minifying your JavaScript and CSS. Those efforts may not improve page load times.

 ➤ Evaluate the number of external references made, whether hotlinking an image or including a
Facebook badge with a status update. Consider using transients, as discussed in Chapter 11.

 ➤ Be sensitive to MySQL database performance on your hosting site. Because every page or
post displayed involves database queries, make sure you’re not overtaxing the expected
performance of your hosting option. Plugins that store content in the database give you
fl exibility, but also add to the database query burden when you’re generating page output.
Again, transients may help you here.

 ➤ Caching your output may be a viable solution; that is covered more in Chapter 13,
“Scalability, Statistics, Security, and Spam.” You will have to weigh the deployment
options and come up with a solution to meet your site’s scale requirements and deployment
obstacles.

c12.indd 315c12.indd 315 12/6/12 1:23 AM12/6/12 1:23 AM

http://developer.yahoo.com/yslow/
http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/

316 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Using JavaScript

One more tip when using JavaScript in your web design: you may be tempted at times to base your
entire site navigation (or another design element) around a super-cool jQuery plugin. The JavaScript
may be a really neat effect, but JavaScript should not be the core of your design. jQuery effects
should be the sprinkles you put on top of the frosting on the cake. You need to have a solid founda-
tion so that the site still functions and is aesthetically pleasing, even if the JavaScript sprinkles fail.
You have to build a site from the bottom up and only add the glitter to a functioning site. Realize
that each new JavaScript library and gee-whiz effect you add to your site increases the load time
for the end user. Consider if the effect really adds something to your site, or if you are just using it
because it looks neat to you.

Furthermore, make sure that your site degrades gracefully if the JavaScript does not work. That is,
make your cake still taste good even if a slice does not have any sprinkles on it. If your site relies on
JavaScript for some functionality to work, and it is the only way for it to work, your site may not be
accessible. You have to consider that some visitors will not have JavaScript enabled, or perhaps not
even available to them, and your site should be able to elegantly downgrade to support them.

In every case, there is a level of effort or visual trade-off required to improve page load times, and
you’ll have to measure the work input versus the user experience output improvement.

USABILITY AND USABILITY TESTING

Your client is probably not the end user. Furthermore, your clients do not know what their users
really want. For that matter, those in the content creation side of things, be they developers or
 writers, do not know what the eventual users — the readers — really want, unless there is some
sort of feedback mechanism, such as testing. Web design is one of those weird trades where
everyone thinks they know what is best. Think back to the marketing person who wanted every
element to be the most important element on the page, which in the end created a wash of
blinking badges.

Your clients generally think they know what their users want because it’s what they would want
when visiting a site of this nature — that is, the site you are building. This works sometimes. But
often, your clients have an intimate knowledge of the topic that their visitor does not have, making
it impossible to be objective.

If you are serious about having a well-crafted user experience, test early and test often. You have
to decide what you are going to test and this really depends on what the goals are for your site. For
example, an e-commerce site generally wants to sell products.

NOTE This story has been used as the poster child for usability testing for
quite a while now, but it is an interesting anecdote about how changing one
 button made a $300 million difference during checkout: http://www.uie.com/
articles/three_hund_million_button/.

c12.indd 316c12.indd 316 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.uie.com/articles/three_hund_million_button/
http://www.uie.com/articles/three_hund_million_button/

Usability and Usability Testing ❘ 317

How can you apply this type of thinking to testing your own site? A/B testing is a nice way to
test what works in a real-world laboratory. With A/B testing, you have two different versions of an
actionable web page. Your site will randomly display one version or the other to each visitor. The
process involves some nice code trickery and provides an easy way to do usability testing with the
general public so it does require that your site be live. Using the results of the test, you can see which
version of your action item performs better. This is, in some ways, also how Google does usability
testing — it modifi es its services on-the-fl y and sees what generates actual traffi c. If you are going
to try A/B testing on your WordPress site, there are several plugins that simplify this process. Some
even work in conjunction with Google Analytics’ Content Experiments for tracking.

Some other options are to use your family and friends, or call for help on Twitter. This is called
crowdsourcing.

Any testing is better than no testing. Having a second set of eyes is just a good idea. You do not
always have to accept the results and make the changes the users suggest, but you should at least
consider them. Again, a fresh set of eyes and a new perspective from someone who is not intimate
with the site, as you are, is a good idea.

If your budget doesn’t have room for usability testing, use your family and friends and watch them
interact with your site. Observing how they fi nd information enables you to isolate places where
your design can be improved, and listening to their comments enables you to see what is good and
bad about the overall feel. Generally, your family and friends represent the average user’s computer
skills and make a nice test audience.

Likewise, you can solicit help from strangers via social networks. However, the results you get back
vary greatly. Generally, people will be polite and tell you one or two little things either positive or neg-
ative, but rarely will you get a cohesive user test back. It is just too time-intensive for the average Joe.

You may be able to get more focused results by enlisting your local WordPress User Group. These
are likely fellow developers and they will have that sensibility in their feedback. Some groups are
more heterogeneous with developers and users, especially on show-and-tell nights. This can be a
good opportunity to solicit some feedback and testing.

If you do have a budget, many sites are available that provide you access to user testing agents.
Generally with these services, you submit your application or site and provide some goals for the
user to achieve. You can also select which level of computer literacy you are targeting. The service
then contacts its agents, who are average users at home, and using special software, the user records
a session while trying to accomplish your goals.

We have used one of these services to test a whole new front-end interface to one of our core web
applications (not WordPress-related). The resulting videos allowed us to watch how the user inter-
acted with the site and provided audio commentary from the users. Some comments were quite overt
whereas others required us to interpret the emotions of grunts and “OKs.” In the end, the user test-
ing showed us some places that required immediate improvement to make the actions more clear
and reinforced some changes that were made based on more experienced internal focus groups.

The WordPress team has done some user testing with the Dashboard in the last several releases. It
seems that the administration dashboards were receiving complete overhauls every couple of versions.
WordPress is, by virtue of being community-developed, a terrifi c example of crowdsourcing, in both

c12.indd 317c12.indd 317 12/6/12 1:23 AM12/6/12 1:23 AM

318 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

development testing and usability. These user tests focused on what features WordPress users used the
most and directly led to the development of the QuickPress and other features. This crowdsource test-
ing has led to the very usable control panel.

Along these same lines, a little user testing goes a long way in improving the layout and design of
your site. It is usually overlooked because developers are smart people and often know best, but you
are also very intimate with the site and the fresh perspective can make your site better if you listen
to some of the advice.

STRUCTURING YOUR INFORMATION

How your site is organized is critical to your visitors and to search engine spiders. In general,
WordPress does a good job of keeping your content organized. After all, that should be a core
 function of a content management system. However, you do have to put a little thought into the
overall structure of your site.

One of the fi rst things you want to ask clients who want to redesign their site, or develop a new one,
is to create an outline of the pages or content for the new site. This forces the client to think about
the structure and organization of the entire site from a 10,000-foot view. Including what type of
content each outline item represents also helps in structuring the overall fl ow of the site. Using this
outline, developers are able to stub out an information architecture of post categories, pages, and
parent pages that will align with client’s outline and make creating the site a smoother operation.
This also allows the client to see the layout of the site with dummy copy, such as lorem ipsum, early
in the process to make any structural changes as needed.

Once upon a time, there was a golden rule for websites that no page in your site should be more
than three mouse clicks deep. This was back in the days when dialup connections were the most
prevalent form of Internet access. Although we are not fans of deep sites, we are not sure if this rule
is still true today. It’s not that the attention span of the visitor has increased at all; in fact, it has
probably diminished. And certainly broadband is more widespread nowadays, but it is not page load
times that are affecting our opinion here.

The short answer is: Search has largely replaced top-down navigation. In our opinion, people do not
go to a website’s index page and run through the global navigation to fi nd the particular topic, arti-
cle, or product they are looking for. Rather, they go to a search engine. The search engine provides a
link to the exact page, or as close as it can get, regardless of how deep in the site it is.

So, although we still favor “everything in three clicks” as a design rule, it is only because it adheres
to the K.I.S.S. methodology and makes your site easier to use. But do not think this is a hard-and-
fast rule, as sites are far more complex and encompass more content than they did when this rule
was in favor. Putting in effort to make your content easier to fi nd through search engines, and then
structuring the content itself with the “three clicks rule” will together improve the user experience.

This is also the ideal time to evaluate what the individual pages or sections are titled. Here is a
sad truth of web design: no one actually reads your content. In a 2006 study by Jakob Nielson
(http://www.useit.com/alertbox/reading_pattern.html), the researchers found that visitors

c12.indd 318c12.indd 318 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.useit.com/alertbox/reading_pattern.html

Structuring Your Information ❘ 319

scanned the content of a web page in a very fast F-shaped pattern, meaning their eyes scroll
down the left-hand side and skim the headers searching for the content they are looking for. The
year 2006 seems like a long time ago, and it is in the technology world, but this study has been
 continually cited since.

Again, this is not a blanket statement. Obviously, people do read the articles and content on
 websites or there would be no reason to have them. But, when you are still trying to attract visitors
and get them to stick around on your site, what should you take away from this study?

Headers matter. Headers should be concise and descriptive. Your content should start with the most
important and evocative information and then get more in-depth. They should also be properly
formatted to use the different levels of HTML headers (more on this later). Headers should contain
action words. They should be interesting and make visitors want to read your content, assuming
that is your goal. Given that visitors are scanning your site, having actions and descriptions in your
headers will allow the visitor to get the overall gist of your page, help them fi nd what they are look-
ing for, and possibly entice them to read the rest of the section.

For example, which of the following outline structures is more meaningful and interesting?
This one:

 ➤ How to Use WordPress

 ➤ Overview

 ➤ The Technology

 ➤ Software

 ➤ Hardware

 ➤ How to Get Started

Or this one:

 ➤ Publishing Your Content on the Internet Using WordPress

 ➤ What Steps Are Involved?

 ➤ What Do I Need?

 ➤ Installing the Applications

 ➤ Confi guring the Server

 ➤ Getting Started Publishing

As you can see, with the fi rst outline, you grasp the general idea of the website. But the second out-
line is much more engaging and draws you in with actionable tasks. You can also see the structure
of the site and how it fl ows.

Remember back in school when you had to write an outline with several levels of headings? This is
the same endeavor. Your content should have structure and headings and supporting paragraphs. If
a heading intrigues a visitor enough, he will read the supporting paragraphs. If not, he will scan on
to the next header. Funny how school actually taught you things you can use in real life, isn’t it?

c12.indd 319c12.indd 319 12/6/12 1:23 AM12/6/12 1:23 AM

320 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

GETTING YOUR SITE FOUND

Search engine optimization (SEO) is how to get your site discovered by the search engines. One of the
key ways to do this is to use the permalink structure in WordPress. These search engine–optimized
permalinks are one of the key features that actually show up in the results pages of all the search
engines. Making them meaningful and descriptive is a must.

Unfortunately, out of the box, the WordPress URL structure uses the query string post identifi er for-
mat (http://example.com/?p=100). For compatibility reasons, this is the default because it works
across the board on different platforms and servers.

Given the choice in a search engine results page between these two URLs,

http://example.com/?p=42

or,

http://example.com/this-is-the-information-you-want

which would you choose? The choice is pretty obvious. With the second option, the visitor or poten-
tial visitor at least has an idea of what he is going to fi nd at the site. This descriptive URL helps with
search engines and click-throughs because the savvy web user knows to look in the status bar of
his browser to see the target site. Therefore, we heartily recommend that one of the fi rst things you
should do when setting up a WordPress site is change the permalink structure, as shown in
Figure 12-3. Of course, you have to be on a platform that will support them.

FIGURE 12-3: Setting the permalink structure in the Dashboard

c12.indd 320c12.indd 320 12/6/12 1:23 AM12/6/12 1:23 AM

http://example.com/?p=100
http://example.com/?p=42
http://example.com/this-is-the-information-you-want

Getting Your Site Found ❘ 321

Shorter URLs are generally better because they are easier to type, yet they need to maintain some
inherent descriptive nature. Therefore, we recommend the Post name setting, which is the same as a
custom permalink structure using /%postname%/. This will use the slug from your post or page and
create the nice SEO-friendly URLs referenced in the preceding example.

In previous versions of WordPress using this setting included a heavy duty parsing penalty during
the search. That is, the database query really needed a number to get good performance. However,
as of WordPress 3.3, the database query rules have been simplifi ed and improved with the result
being a performance boost during parsing.

Additionally, you have two optional fi elds on this control panel to rewrite the category and tag
base URL elements. For example, when you visit a category page in your WordPress site, the URL
usually looks something like http://example.com/category/cool-stuff/. You can replace the
word “category” with whatever you key into these optional fi elds. You can just use a letter c for
category and t for tag to make the URLs shorter, but some creative uses of these fi elds can lead to
some interesting and meaningful URL structures.

NOTE Chris Shifl ett has an interesting post on his PHP Security blog (http://
shiflett.org/blog/2008/mar/urls-can-be-beautiful) that discusses how
URLs can be beautiful. At the time, Chris worked for OmniTI, and the URLs
for the new site involved action words that conveyed a very clear meaning: for
example, http://omniti.com/is/hiring and http://omniti.com/helps/
national-geographic.

Duplicate Content

When a search engine is spidering your site, if you have duplicate content, or more specifi cally,
multiple paths to the same content, the search engine may divide up your ranking (and SEO equity)
across these multiple pages, diluting your overall ranking for any specifi c content piece. This section
addresses how to keep multiple paths to content from appearing as distinct content views.

WordPress practically encourages duplicate content. Your posts are shown on the index page and
on the category page for each category the post is in. Each tag creates a tag page for that content;
plus your posts are kept in the yearly and monthly archives. So, while this provides you multiple
paths to get to your content, which was considered a good thing in a previous section, it also weighs
you down with you with duplicate content issues. Duplicate content on your own site may or may
not actually be a bad thing; the jury still seems to be out on it. For example, the Google crawler,
which indexes your site, has built-in logic to try and determine the nature and cause of your dupli-
cate content. The crawler knows how to handle different views of the same content, such as for
print versions. It also does its best to reinforce the primary source of the content — for example in a
WordPress site, the single.php view.

In addition, Google provides a Webmaster Tools site that can provide insight into how the Google
crawler sees your website. Use the Google XML Sitemaps plugin from Arne Brachhold, available
online at http://wordpress.org/extend/plugins/google-sitemap-generator/. This creates

c12.indd 321c12.indd 321 12/6/12 1:23 AM12/6/12 1:23 AM

http://example.com/category/cool-stuff/
http://shiflett.org/blog/2008/mar/urls-can-be-beautiful
http://shiflett.org/blog/2008/mar/urls-can-be-beautiful
http://omniti.com/is/hiring
http://omniti.com/helps/national-geographic
http://omniti.com/helps/national-geographic
http://wordpress.org/extend/plugins/google-sitemap-generator/

322 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

an XML sitemap for Google to use when indexing your site, which helps the spiders fi nd everything.
But Webmaster Tools also has some other interesting tools and investigative features. For example,
under Optimization ➪ HTML Improvements, you can see duplicate content that the spider saw, as
shown in Figure 12-4.

FIGURE 12-4: Google Webmaster Tools

Further clicking into the duplicate content suggestion will indicate exactly which pages are causing
you problems. In all fairness, Microsoft’s Bing.com has a similar set of tools that are just as nice.

Additionally, you should edit your robots.txt fi le. The robots.txt fi le provides some more guid-
ance to the search engine spiders on what should not be indexed. By default, a spider will aggres-
sively index whatever it can fi nd. The robots.txt fi le tells the spider what it is explicitly not
allowed to index. Again, you are relying on the spider to play by the rules, but here is a good start
for your robots.txt fi le:

Sitemap: http://www.example.com/sitemap.xml

User-agent: *
Disallow: /cgi-bin/
Disallow: /wp-admin/
Disallow: /wp-includes/
Disallow: /wp-content/plugins/
Disallow: /wp-content/cache/
Disallow: /wp-content/themes/
Disallow: /trackback/
Disallow: /feed/

c12.indd 322c12.indd 322 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.example.com/sitemap.xml
http://Bing.com

Getting Your Site Found ❘ 323

Disallow: /comments/
Disallow: /category/*/*
Disallow: */trackback/
Disallow: */feed/
Disallow: */comments/
Disallow: /*?
Allow: /wp-content/uploads/

If you include your sitemap, don’t forget to change the URL in your robots.txt fi le to match your
actual site.

Trackbacks and Pings

Google increases your page rank by counting links to your site through trackbacks. Trackbacks
are a validation of your content by other sites. They started as a way for one site to inform its read-
ers that they may be interested in this content from another site and also to let the other site know
“Hey, I talked about your content and here’s the link.” They can basically be thought of as com-
ments about your content on a remote site.

By default, WordPress groups comments and trackbacks together, further validating that they are
remote comments, but this can often look messy to your reader. A common practice is to separate
out the trackbacks from the actual comments in the comment loop. The Twenty Eleven theme does
this for you in the default templates using the twenty_eleven() function found in functions.php:

switch ($comment->comment_type) :
 case 'pingback' :
 case 'trackback' :
 ?>
 <li class="post pingback">
 <p><?php _e('Pingback:', 'twentyeleven'); ?> <?php comment_author_link(); ?>
 <?php edit_comment_link(__('Edit', 'twentyeleven'),
 '', ''); ?></p>
 <?php
 break;
 default :
 ?>
 <li <?php comment_class(); ?> id="li-comment-<?php comment_ID(); ?>">
 <article id="comment-<?php comment_ID(); ?>" class="comment">

As the comments are walked, this function determines if it is a trackback or an actual comment and
displays it accordingly. You can review the Twenty Eleven functions.php template fi le for more
information and to view the remainder of the function. You can also override this function in a
child theme to make the display logic your own. What this gets you is a clear separation between the
active discussion on your site, for your visitors to participate in, and a list of related sites that have
also mentioned your content. They can be divided logically and visually, making it easier to digest
for the visitor.

Pings, on the other hand, notify other sites when new information is published. Generally your
WordPress site would ping an update service, such as Ping-o-Matic, that you have new content on
your site. Likewise, if you are writing about content on another WordPress site, your site may ping
that other site to let it know about your content. In this respect, pings are similar to trackbacks.

c12.indd 323c12.indd 323 12/6/12 1:23 AM12/6/12 1:23 AM

324 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Pinging update services is a good way to drive traffi c to your site. Some sites take the information
from these update services and create information link sites about them. The theory is that casual
surfers of these sites may discover your content related to a topic they are browsing. In this respect,
pinging works very much like a push version of RSS or tweeting your new content.

Signing up to use an update service such as Ping-o-Matic is really simple to do. Simply browse to the
site at http://pingomatic.com/, sign up your site, and it starts working. There is not much to it.

Tags and Content Sharing Sites

Technorati.com was one of the fi rst sites to utilize these update services and create an aggregation of
blogs. Technorati tags enable you to put your content into categories at www.Technorati.com. Basically,
you insert a tag on your page that points back to Technorati so that your content is aggregated by
tag along with similar posts. Technorati tag functionality is waning, however, in lieu of new notifi ca-
tion processes. While the Technorati site is not the important add-on to WordPress that it once was,
it is still an easy place to get your content listed with relatively little effort. You now have plenty of
ways to advertise new content with the advent of social media sites such as Facebook, Reddit, and
Twitter. For example, Chapter 11 covered how to add social networking buttons to your posts, which
serves as a simple way for you to effectively crowdsource the notifi cation processes through these new
aggregators. Having your readers recommend content and pass it on to tag-oriented sites improves
the chances of your content being found through channels other than search engines.

In practice, the pinging functionality is not used very much. Rather, a custom application is used
that parses the RSS feeds of the various sites and tweets new posts as they are posted. In certain
situations, this notifi cation works better.

HOW WEB STANDARDS GET YOUR DATA DISCOVERED

HTML is text markup. That is literally what it means. When HTML was fi rst developed, the inten-
tion was to take content and mark it up in a consistent and meaningful way. Many different HTML
tags accomplish this. It was for scientifi c and academic use and the majority of content fi t this
nature.

Eventually, the marketers showed up and got their greasy hands involved. They wanted fancy lay-
outs, graphics, sales pitches, and pretty pink ponies. To accomplish this, designers and developers,
both good and bad, lost sight of the original markup and used whatever means necessary to create
the best-looking site on the web. This included table-based layouts.

In recent years there has been a back-to-basics mentality among the better developers. This likely
includes you, because you are reading this book. These developers recognize the power of separating
concerns, such as presentation and content, CSS and HTML. They also recognize the advantages of
using semantic HTML.

Semantic HTML

POSH stands for plain old semantic HTML. This acronym expresses a back-to-basics mentality in
the underlying HTML of websites. For all the glittery design and fl air, developers can use CSS to
make it happen. Look at CSS Zen Garden for an example.

c12.indd 324c12.indd 324 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.Technorati.com
http://pingomatic.com/
http://Technorati.com

How Web Standards Get Your Data Discovered ❘ 325

Why should your site use POSH? There are a few reasons. First, it is the best thing for the future
web. Paying it forward, if your site continues to use semantic HTML, browser manufacturers will
continue to support it in their browsers.

Second, for the developer, it makes the content easier to validate and maintain. There is much less
cruft in a properly semantic HTML document than in one that is coded old style. Consider this,

<div style="
 background: #F0CCFA;
 border: 1px solid # D894EB;
 color: #f00;
 font-size: 2em;
 margin: .25em 0;
 padding: .5em;">
 This is my subheading
</div>

versus this:

<h2>This is my subheading</h2>

And that is not even really old style. This still uses CSS instead of the multiple nested tags
that really clutter up the old HTML documents. Valid, lean HTML is easier to maintain. It is that
simple.

Speaking of lean, stripping all the cruft out of your HTML can really make your pages load faster.
Think of all of the extra markup that is moved out of each page load and into a browser-cached CSS
fi le. This can be a signifi cant weight loss for your pages.

The third reason is accessibility. Structuring your HTML semantically increases the likelihood of
screen readers fi guring out your content and having it make sense to the visitor.

Finally, valid semantic HTML helps with search engine optimization. Search spiders are not very
smart. They do not care how pretty the site looks or the cool new graphic treatment you created.
They only care about the content. And they cannot think for themselves.

Semantic HTML conveys the meaning of the text you are marking up. That is why it is called
semantic, after all. Using the proper HTML tag for the content is the fi rst step. For example, six
levels of headers are available to you in HTML. Using them in the correct order is essential for SEO.
Similar to using a site outline to map out your site, this is also how the crawler knows the order of
your content.

Even if you separate your CSS properly into a style sheet, the spider cannot determine the value of
this HTML:

<div class="pagetitle">My Site Is About Something Important</div>

If you use the <h1> tag, however, the spider knows that this is the header for the entire page and
attributes this content with the appropriate weight.

<h1 class="pagetitle">My Site Is About Something Important</h1>

c12.indd 325c12.indd 325 12/6/12 1:23 AM12/6/12 1:23 AM

326 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Scrolling down your content, you should use the appropriate levels of headers for additional content.
The general consensus is that each page on your site should have only one <h1> tag to indicate the
top level of each rendered page. Conventional wisdom is that this <h1> is reserved for the name of
the site and then there can be multiple instances of the other heading levels as needed. The only fl aw
in this is that the name of your site does not really change, so it is not the <h1> that matters the most
for each page. Using headers in this manner makes the <h1> really irrelevant; the <h2> would be the
page title describing the rendered page’s content. It’s easy to understand both sides of the argument;
you will have to make your own decision.

Images should always have alt attributes. This informs the spider what the image is rendering
because the spider cannot see the graphic itself. This information is also what screen readers use.

The <div> tag is for blocks of content and the <p> is for paragraphs. Use the more meaningful
and to emphasize and strongly emphasize your content. Also discussed later in this chap-
ter are HTML5 tags for specifi c blocks of content, such as <header>, <footer>, and <article>.

Use proper lists to organize your data. Ordered lists () and unordered lists () are easy ways
to convey information to the spider. A properly formatted list is semantically more information to
rate than a paragraph fi lled with
 tags. There is also the lesser-known defi nition list (<dl>)
element, which is very effective in paired information lists, such as Frequently Asked Questions.
This list and explanation of HTML attributes can go on and on.

In short, semantic HTML is all about using the proper HTML tag for its intended use. It is worth
reading through the W3C specifi cations and learning the different tags and their purpose. Adding
these additional tools to your bag of tricks will make you a better developer, but will also make your
pages lighter, more meaningful, and more accessible, all of which are good things for your visitors
and your search engine rankings.

Valid HTML

For, you, the developer, valid HTML and valid CSS is just plain easier to maintain. It is a simple
fact. If your code is structured correctly, you can get in and out and make the changes you want
quicker. We still have some ancient table-based layouts lying around from clients that have never
wanted to update the look of their site. If you have not had to work on one of these in a while, it’s
astonishing to remember how hard they were to work on. But at the time, this is what we had.

Valid HTML also helps in solving cross-browser rendering issues. All developers dread the day
they have to test their great looking site in one of the older less standards-compliant browsers. You
know which one. It is important that the developer has completely consumed the requisite amount
of coffee and moved all sharp objects out of arm’s reach before opening this browser for testing.
Inevitably, something will not be right. Having validated HTML is the fi rst line of attack when deal-
ing with this browser’s rendering challenges. Always start from a clean code before taking measures
to make it look reasonable in these browsers. And have hope, maybe, that someday this browser
will not be around anymore. Fortunately, supporting the older browsers is becoming easier as users
become more aware of the need to upgrade and try alternate browsers. In addition, some new tricks
in the theme HTML allow you to target specifi c browsers with conditional comments.

For SEO, it is back to a “spiders are not very smart” problem. Valid HTML makes your content eas-
ier for the spider to understand and therefore rank. If your HTML is not properly valid, the search

c12.indd 326c12.indd 326 12/6/12 1:23 AM12/6/12 1:23 AM

How Web Standards Get Your Data Discovered ❘ 327

engine can lose the content that is not visible to it while it is looking for the closing tag or attribute.
This can severely limit the content that is viewable to the spider and hinder your site’s ability to
rank. Browsers tend to be more forgiving on invalid HTML and do their best to render what they
can, but a spider is working on speed and quantity of content to digest. The spider is just going to
breeze past anything it does not understand. Again, use a means like Google Webmaster Tools
to see how a browser perceives your site.

Many resources are available to validate your HTML, including the W3C’s own Markup Validation
Service at http://validator.w3.org/. In addition, most browser developer tools have a plugin or
extension to use the W3C’s validator service.

Microformats

Microformats are the more complicated brother of POSH. The idea is to add simple tags to HTML
that convey contextual information for the HTML content. Once you see how they work, some are
an almost natural way of dealing with the content, similar to an implementation of XML in HTML.
The microformat convention is to format certain information in HTML so that it is reliable and
can be discovered by microformat-enabled tools. For example, you will often see contact infor-
mation and addresses expressed in a microformat syntax. You might even be using microformats
already and not even know it.

For example, the Technorati tags mentioned earlier are microformats. The rel attribute on an
anchor tag linking to Technorati.com indicates that the page you are linking from has been tagged
for Technorati consumption. This is a microformat:

WordPress

Another common microformat that is built into WordPress is the XFN (XTHML Friends Network).
This microformat is simply an attribute you place on links to indicate your relationship with that
person. This feature is built-in on the Links control panel, also known as your blogroll.

Using this handy control panel, you can easily add microformat attributes to your link indicat-
ing how and where you know the individual you are linking to. For example, consider the settings
shown in Figure 12-5.

FIGURE 12-5: Editing the XFN of a link

c12.indd 327c12.indd 327 12/6/12 1:23 AM12/6/12 1:23 AM

http://validator.w3.org/
http://technorati.com/tag/wordpress
http://Technorati.com

328 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

These settings will render the HTML as:

<a title="WordPress.org" rel="friend colleague muse"
 href="http://WordPress.org">WordPress.org

This is a simple yet effective way to create some meaningful information about the link. The key is
the simplicity of it. To a web browser, this information does not affect the rendering. In fact, only
recently has Internet Explorer even allowed developers to use the rel attribute as a CSS selector.

But imagine the power when a search engine spider or other tool can create a social graph out of
the information contained in microformats. You can fi nd more information about the XFN at
http://gmpg.org/xfn/.

Another microformat that is gaining traction is the hCard. The hCard microformat is for displaying
contact information for a person or organization. It is the HTML rendering of the common vCard
format used in e-mail and e-mail address books such as Microsoft Outlook and Mac OS X Address
Book.

Here is a sample hCard:

<div id="hcard-David-Damstra" class="vcard">
 David Damstra
 <div class="org">Professional WordPress</div>
 <div class="adr">
 <div class="street-address">123 Main Street</div>
 Grand Rapids,
 MI,
 49525
 </div>
</div>

Obviously, the information has been changed so you cannot stalk David. The hCard is one of the
most common microformats used. It is very similar to the vCard format used in e-mail and address
book software.

Render the preceding hCard on your site and it looks like an innocuous address block. But running
this same code through a tool or spider that understands this microformat can lead to much more
intelligent use of the information.

Microformats allow external tools to make better use of your blog posts, ideally driving more
viewers to your site. Conversely, they make use of external services using metadata in your micro-
format tagged posts. One example is the GeoMark plugin that converts location information in
a post into GEO microformat tags stored as post metadata that is also passed on in RSS feeds of
your post.

Currently, search engine spiders do not weigh microformatted data any differently than the other
content on your site. However, microformats are emerging and continue to gain traction, and even-
tually spiders will recognize them and be able to harvest the semantic data included. The bottom
line is that microformats are becoming the de facto convention for marking up this type of informa-
tion. So although the microformat is spidered the same as traditional content, by using the microfor-
mat conventions you are working toward future-proofi ng your content.

c12.indd 328c12.indd 328 12/6/12 1:23 AM12/6/12 1:23 AM

http://WordPress.org
http://gmpg.org/xfn/
http://mirmillo.com
http://WordPress.org
http://WordPress.org

How Web Standards Get Your Data Discovered ❘ 329

Microformats are an investment in the future. They are relatively simple ways to structure specifi c
content so that at a later time this information can be used to do something informative or cool.
Hopefully in the future, you’ll be able to search for a name and fi nd that person’s social graph
along with it, search for a business and automatically have the contact information logged to your
smartphone, or search for a location and time and have an aggregated list of events that are
occurring in the vicinity. The data is starting to emerge, so the tools cannot be far behind.

HTML5

While talking about progressive HTML elements, let’s take a quick detour into HTML5. While not
WordPress-specifi c information, this topic it is very appropriate for web development in general.

What is HTML5? Basically, it is the next iteration of the HTML standard that web developers
have been using for years. But the term itself is a little loaded. It has become a marketing term to
encompass many, many aspects of web development above and beyond the basic HTML syntax.
It’s essentially a buzz term for executives to indicate the latest and greatest web development tech-
niques, sort of like Web 2.0 was in the late 2000s. So when you hear someone mention HTML5,
you have to ask yourself whether they mean HTML5 specifi cally, or the current crop of web
 development techniques, including HTML5, CSS3, and Javascript.

Let’s focus on actual HTML5. What is included in HTML5? Quite a bit actually — some things
that you can use immediately, some that you can use selectively depending on your audience, and
many things that you will have to wait for browser adoption to really take up.

The biggest feature of HTML5, and likely the one most web developers think of fi rst, is the new tags.
HTML5 introduced many HTML elements that are more descriptive and have a semantic purpose.
With a little help, you can actually use these new tags today, but more on that in a minute. If you
have been developing websites or WordPress themes for a while, you will recognize the common
<div id="header"> and <div id="footer"> as pretty pervasive to all websites. With HTML5, these
elements are replaced with the new <header> and <footer> tags. Additional tags have been created
that are particularly appropriate to WordPress themes, including <nav>, <article>, and <aside>.

As you can imagine, the <article> tag specifi cally fi ts right into the pages and posts paradigm of
WordPress. In fact, the Twenty Eleven theme actually uses these tags for that purpose. The Twenty
Eleven theme leverages many of the new HTML5 tags in the theme templates and is a good place to
start when exploring how to use these tags in your own custom themes.

Another good resource for seeing the HTML5 tags in action is the HTML5 Boilerplate by Paul
Irish , online at http://html5boilerplate.com/. This resource is not WordPress-specifi c but
takes all the best practices and recommendations and bundles them together in a HTML5 starter
set. Additionally, there are several WordPress themes that have been created using the HTML5
Boilerplate as a source.

A quick cautionary note about HTML5 tag elements: they are not directly supported by all brows-
ers, notably Microsoft browsers prior to Internet Explorer 9. However, all is not lost. There are
JavaScript solutions to make these older browsers recognize the new HTML5 tags and let you style
them appropriately. The Twenty Eleven theme uses HTML5Shiv (http://code.google.com/p/
html5shiv/) to achieve this functionality. Another option, the one used by HTML5 Boilerplate,
is the modernizr.js from http://modernizr.com. Modernizr includes the HTML5Shiv to allow

c12.indd 329c12.indd 329 12/6/12 1:23 AM12/6/12 1:23 AM

http://html5boilerplate.com/
http://code.google.com/p/html5shiv/
http://code.google.com/p/html5shiv/
http://modernizr.com

330 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

older browsers to recognize the new HTML tags, but also includes additional feature detection to
enable you to use additional HTML5 features and CSS3 attributes. Which one you use is dependent
on your needs.

In our opinion, HTML5, with the appropriate JavaScript, is safe to use in production sites. You can
and should be building new themes with the HTML5 tags. The fact that Twenty Eleven uses these
tags is an additional stamp of approval from Automattic. Just make an evaluation of the browser
you need to support and make a decision based on your requirements.

In addition to the new more descriptive HTML tags, HTML5 has a bevy of additional features. As
mentioned before, some of them you can use today and some of them you’ll need to wait until browser
adoption takes off. A convenient website for determining browser support is http://caniuse.com.

This website tracks past, current, and development versions of the common web browsers and
assesses their support of new features, including HTML5, CSS3, and others. It does not take into
account when you apply a JavaScript shim such as HTML5Shiv or Modernizr.js. The site tracks out-
of-the-box support. This can be a very convenient resource when you are planning your design and
settling on which browser to support and which features you want to include.

Some of the additional features of HTML5 include offl ine storage, which could be used for mobile
device web applications when the mobile device does not have an Internet connection. Media and
canvas tags are available for delivering certain media fi les directly in the browser. An especially
exciting feature is the new form validation and helpers. These updated form tags include the actual
validation mechanism built right into the browser and include additional features such as place-
holder text on the forms and formatting. Basically, the new form features are trying to solve the
problems on the web that you currently deal with everyday.

As mentioned, HTML5 has many more features; to learn more, check out http://www.html5rocks.com.

CSS3

This section is about cascading style sheets, version 3, or CSS3. This is the next iteration of styling
websites. Currently, many of the new CSS3 styles are implemented in browsers using browser-specifi c
prefi xes. This allows you to try out these new features on specifi c browsers, but also makes mainte-
nance more diffi cult when you have three to four lines in your CSS fi le to produce the same effect on
different browsers.

Again, http://caniuse.com is an invaluable resource for determining which features you can use
across browsers using offi cial CSS3 syntax and when you need to implement browser-specifi c pre-
fi xes. Also, the general consensus now is that developers do not need all browser versions to render
websites exactly the same. Being reasonably close is usually good enough. Also, adding fl ourishes
and design details to browsers that support them while leaving older browsers to render it without
them is also acceptable. This is generally called progressive enhancement.

A common example of progressive enhancement is rounded corners. Imagine your design mockup
has rounded corners on certain design elements. Prior to CSS3, web developers had several tricks
for making rounded corners, including images, both positive and reverse in color, as well as
countless JavaScript libraries. With CSS3, rounded corners is a simple CSS3 style using the
border-radius style.

c12.indd 330c12.indd 330 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.html5rocks.com
http://caniuse.com
http://caniuse.com

Searching Your Own Site ❘ 331

You can apply this style and check it in your browser, and it works fi ne. However, if you look up
border radius on www.caniuse.com, you will notice that Internet Explorer 7 and 8 do not support
this style — which is why you had all those tricks in the fi rst place. At this point, you can choose
to accept progressive enhancement. The website still renders fi ne in Internet Explorer, but certain
elements have squared off corners. Browsers that support the enhanced effect have the look you
intend. The thought here is that eventually (one hopes), all browsers will converge on the standards,
and eventually (one hopes), your enhanced design will become the design that everyone sees. The
fl ip side is that you still have to test your design in the older browsers to make sure they do, in fact,
 render reasonably well, assuming you do need to support these older browsers.

One of the biggest, most immediately accessible features of CSS3 is a media query. Media queries
enable the designer to tailor a website to specifi c screen resolutions, prompting a new type of mobile
website experience. This topic is covered in a little more depth later in this chapter.

HTML5 adds new semantic tags to make your site’s content more understandable to devices that are
rendering or crawling your data. Couple this with CSS3 styling to add new appearance and design
attributes to the look and feel of your content. Together they are making the user experience easier
to maintain for both human and nonhuman consumers.

SEARCHING YOUR OWN SITE

So far, you have learned how to make your site visible and effective in the big search engines by
structuring, organizing, and coding your site to raise your listings, or at least get the ranking you
deserve. What happens when the visitor gets to your site and uses the built-in on-site search? Do the
same rules and guidelines apply?

The answer is yes and no. The SEO principles and practices discussed are a solid foundation to build
on. They are tried-and-true rules, although the search engines can make up their own rules and change
them on a whim — you are in the Wild West Internet. The change lies in the built-in WordPress search.

Weaknesses of the Default Search

Out of the box, the WordPress search is probably good enough for most small sites. After all, this
was how WordPress evolved, and good enough was good enough. But as your site grows, or as you
build larger, more prominent sites, good enough is no longer good enough. The default WordPress
search has some serious defi ciencies for larger sites, and there are a couple of important challenges
to be addressed here.

Results are sorted by date, not relevance to the search terms. WordPress loves showing content in
chronological order. Chronological posts are the heart of the WordPress engine. So the default search
will return results of the search term in reverse chronological order. It suffers from a recency effect.

Even if you have a large, excellently written article about a topic, if newer posts about the same
topic exist, the newer ones will get top billing in the results pages. Relevance to the search terms
does not matter. There is no weighting in the results for search term counts. The search strictly
glances through all the post and page content, and if the term appears, it fl ags it for the results and
then spits them out in date order.

c12.indd 331c12.indd 331 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.caniuse.com

332 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

This brings you to the next shortcoming. The search only searches some of your site’s content. The
default search only looks in the post content and page content — not the headlines, not the com-
ments, not the links, not the categories, not the tags, nothing else. You learned earlier that headlines
matter, and visitors only read the headlines, so if your catchy article headline sticks in someone’s
head and they return to your site to search on some variation of your headline, search may not fi nd
it because headlines are not indexed.

Ideally your content supports the catchy headline you made, so eventually your content will be
found with search. But there is so much more content to your site that could be used to empower the
search to make it more effective or even to broaden the search. After all, it could have been one of
your comments that really sparked the interest.

Next, there is no logic to the search. That is, you cannot use any sort of Boolean syntax in the
query. The search is a straight up “fi nd this word in the posts” kind of search. Search power users
use Boolean syntax all the time to create very refi ned search engine results. WordPress search does
some silly things with these keywords.

For example, try searching on your WordPress site using Boolean keywords in your search string,
such as searching for keyword1 AND keyword2. In this case, you want to fi nd content that contains
both keywords. You will fi nd that WordPress search treats the AND just like any other keywords and
will include content that contains all three words, that is, the keywords and the word AND. In all
likelihood, you will have no results.

WordPress search handles a Boolean “or” in the same fashion. Try searching for content with either
keyword1 or keyword2 in it using the search string keyword1 OR keyword2. Again, WordPress
search treats the OR just like the actual keywords. Now search for either keyword independently and
compare the results. Depending on your site, you will notice that the OR search does not contain the
same results as the two independent searches combined. After some simple experimentation, you
will see that WordPress search does not know how to handle these generic Boolean queries.

Some people complain that the WordPress search does not highlight the search terms in the results.
In some situations highlighting is handy; other times, it does not affect the usefulness of the search
results. This defi nitely seems like a personal developer choice, which makes it ripe for a plugin. On
the other hand, this could easily be handled with some creative PHP and CSS also.

The WordPress search has been good enough, but it does not take advantage of some available
tools such as MySQL FullText search or other third-party search engines such as Lucene or Sphinx.
Understandably, WordPress needs to keep the installation process simple and reduce the dependen-
cies on external software packages. This defi nitely complicates the whole installation. But, if a devel-
oper is capable and willing to integrate these other packages, why not let them?

Some of these seem like big deals, and for some developers they certainly are. But search is a pretty
personal thing. Different developers want it to have specifi c functionality or algorithms and because
WordPress has a great plugin system, each developer can have what he wants. You can either fi nd an
existing plugin or you can write your own to scratch that pesky search engine itch.

Alternatives and Plugins to Help

Obviously, we are not the fi rst to recognize these inadequacies in the default search mechanism. Some
very talented developers have set out to create plugins that enhance or replace the built-in search.

c12.indd 332c12.indd 332 12/6/12 1:23 AM12/6/12 1:23 AM

Searching Your Own Site ❘ 333

Many, many plugins are available. Some target specifi c issues, and others change the whole search
process. Following are some of the more popular search engine plugins for WordPress.

Search Everything (http://wordpress.org/extend/plugins/search-everything/) by Dan
Cameron of Sprout Venture extends the breadth of the WordPress search to include the different
content sources in the index, including comments, tags, and categories. Search Everything also
has settings for search term highlighting, and all the settings are managed from an Administration
 control panel.

Relevanssi (http://wordpress.org/extend/plugins/relevanssi/) by Mikko Saari is another
search replacement plugin. This plugin comes in both a free version and a premium version that
includes support and additional features. This plugin includes search term highlighting and also
searches additional fi elds such as comments, tags, and custom fi elds. But the biggest advantage
of this plugin is that it uses syntax that will be familiar to Google users. This plugin supports the
Boolean logic operators AND and OR. It supports phrase searches when included in quotes and
 partial word matches. This is much more of the search experience users are expecting.

Alternatively, you can actually match the experiences users expect by using a Google Custom
Search Engine (http://www.google.com/cse/). Google Custom Search Engine (CSE) is a service
offered by Google to provide your own subset of Google’s existing search results. Google offers
two programs for your Custom Search Engine. The basic free edition enables you to customize the
look and the index but includes Google Ads. The second tier starts at $100 per year to remove
the ads and the Google branding, if you desire. Either option integrates into your WordPress site
in the same way.

There are several plugins for integrating a Google CSE into your site. Alternatively, you can inte-
grate it manually using page templates and the code provided by Google. Page templates were cov-
ered in depth in Chapter 9, but here is a quick example of how you could set this up.

First, sign into the Google Custom Search Engine control panel and create your new custom search
engine. After you have set it up, you will want to modify the look and feel. Change the layout to the
Two Page option. This enables you to put the search box anywhere on your website and then have a
specifi c page designated for the results. Save this setting and get the code.

Here you need to do a little juggling to create the page you need for the code page of the Google
Custom Search Engine. Switching back to your WordPress site you need a specifi c page for your
search engine results and you want to assign that page a specifi c template. First, make a new page
template for the results. It could be as simple as the following:

<?php
/*
 * Template Name: Google Search Results
 */
get_header(); ?>
<div id="primary">
 <div id="content" role="main">
 <!-- google search engine results -->
 </div><!-- #content -->
</div><!-- #primary -->
<?php get_footer(); ?>

c12.indd 333c12.indd 333 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.google.com/cse/
http://wordpress.org/extend/plugins/search-everything/
http://wordpress.org/extend/plugins/relevanssi/

334 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

Notice there is a spot in the content area where you will paste in the search results code provided by
Google. Save this template fi le and push to your WordPress theme on the server.

Next, you need to make a page that uses your theme to show the results. Create a new page on your
WordPress site. Select the page template you just pushed and publish the page. Because you are using
the preceding page template, you do not need anything in the content area of the page; Google will
fi ll it in for you.

Finally, you need to create the search box on your WordPress installation. Probably the simplest
method is to use a text widget in one of your widget areas. Simply copy the Search box code pro-
vided by Google and save it in a widget.

Now you need to test that it all works together. Depending on when your website went live, you may
need to wait for Google to index your pages.

To really leverage the power of a Google Custom Search Engine, make sure you connect it to your
Google Analytics and Google Webmaster Tools accounts. In addition, evaluate some of the addi-
tional features in the Google Custom Search Engine such as Refi nements to modify the indexing,
and Promotions to highlight certain search results.

MOBILE ACCESS AND RESPONSIVE WEB DESIGN

Mobile access continues to be a hot topic because of an enormous market uptake of smartphones
with high-speed data services and stores that proliferate fat client applications for these phones.
Forrester , a global research fi rm, reports that more than half of the world’s population has a
mobile device (http://blogs.forrester.com/susan_huynh/12-02-21-mobile_internet_
users_will_soon_surpass_pc_internet_users_globally). Google reports more of its Google+
users are on mobile devices than desktop devices (http://www.engadget.com/2012/06/27/
google-has-250-million-users-more-mobile-than-desktop/). Morgan Stanley has been say-
ing for years that mobile access will exceed desktop access in the next several years (http://
mashable.com/2010/04/13/mobile-web-stats/).

Mobile users are clearly an audience you cannot afford to ignore. The question is how much atten-
tion do you need to give to this burgeoning crowd. Do you customize an experience for each type of
device? Can you keep up with device proliferation? Screen sizes and features and the feature API all
vary. There are currently a couple of schools of thought on how to handle this.

Leave It Alone

The fi rst paradigm, and obviously simplest, is to leave it alone. That is, show mobile browsers your
full website. Give them the whole experience that you are providing to desktop users.

The idea here is that the newer browsers on the smartphones, such as the Apple iPhone and Google
Android devices, can render traditional websites acceptably fi ne. The tech savvy users of these
devices know that the browser is limited and the screen is small and they do not expect a stellar
user experience. In short, leave it to the user and the device. Tablets and smartphones can zoom and
scroll and users are used to these techniques. If you have young children with tablet experience, you

c12.indd 334c12.indd 334 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.engadget.com/2012/06/27/google-has-250-million-users-more-mobile-than-desktop/
http://www.engadget.com/2012/06/27/google-has-250-million-users-more-mobile-than-desktop/
http://mashable.com/2010/04/13/mobile-web-stats/
http://mashable.com/2010/04/13/mobile-web-stats/
http://blogs.forrester.com/susan_huynh/12-02-21-mobile_internet_users_will_soon_surpass_pc_internet_users_globally
http://blogs.forrester.com/susan_huynh/12-02-21-mobile_internet_users_will_soon_surpass_pc_internet_users_globally

Mobile Access and Responsive Web Design ❘ 335

probably have fi ngerprints on your desktop monitor from the child trying to scroll the screen and
subsequently complain when it does not work.

In practice, this method generally works well. All of the information on the website is still accessible
on a mobile device. The visitor continues to use learned website conventions and behaviors from the
traditional browsing experience. The challenge is the small text and limited screen real estate.

Lightweight Mobile

Another school of thought is that you have the technology available to create custom themes for these
devices, especially with the power of WordPress. Mobile themes hearken back to the lightweight
themes of dial-up days to conserve the limited bandwidth available. This makes mobile themes faster
to load over the wireless bandwidth. In addition, they should be tailored to fi t the small screen real
estate and focus on the information that the mobile visitor is really looking for — often locations and
contact information.

WPTouch is a plugin that converts your site to look like a native iPhone application. The WPTouch
Plugin was created by Dale Mugford and Duane Storey from Brave New Code and is available at
http://wordpress.org/extend/plugins/wptouch/.

After installing this plugin, your site will automatically detect mobile browsers and offer them
your entire site, but in a specifi c mobile-enhanced theme. This theme uses AJAX requests and other
effects, giving the illusion of a native application. In addition, WPTouch offers an extensive control
panel to manage all the settings.

WPTouch also offers the ability to set a custom index page for mobile browsers. This is a fantastic
feature and enables the developer to create a custom page for the quick information that the mobile
visitor really needs. In addition to the iPhone-inspired theme, WPTouch includes the capability to
tweak the CSS to create a theme that matches your traditional site theme. WPTouch also offers the
capability for the mobile visitor to select to view the traditional desktop theme.

A couple of notes of caution: If you are using a caching plugin, discussed in the next chapter,
you will have to set it to exclude showing cached content to the mobile browser. Otherwise, the
caching will supersede the WPTouch browser detection and the traditional theme will be shown.
Second, every mobile detection behaves a little differently. Should the iPad browser be considered
mobile, or is the screen large enough to offer the desktop version? What about the Amazon Kindle
with a slightly smaller screen? Should it behave differently if the device is on WiFi or a slower cell
signal? Compound these automatic software decisions with user preferences.

Responsive Design

A responsive design is the current craze. Responsive web design was fi rst proposed by Ethan
Marcotte on A List Apart in 2010 (http://www.alistapart.com/articles/responsive-
web-design). In essence, responsive web design uses the CSS3 media queries’ functionality,
mentioned previously, to reformulate the layout and design of your website theme to match the
screen size of the device it is being viewed on. The theory here is that you manage the content and
theme at once, and then tweak it for different screen resolutions. That is one set of content for

c12.indd 335c12.indd 335 12/6/12 1:23 AM12/6/12 1:23 AM

http://www.alistapart.com/articles/responsive-web-design
http://www.alistapart.com/articles/responsive-web-design
http://wordpress.org/extend/plugins/wptouch/

336 ❘ CHAPTER 12 CRAFTING A USER EXPERIENCE

every screen size that adapts, or responds the viewing environment through selective CSS rules. In
practice, it is much more complex.

This works because of media queries. Media queries existed prior to CSS3. Print style sheets are a
form of media query that web developers have used for a long time. What changed with CSS3 is that
the media queries now support screen resolution calculations. These queries now allow you to apply
certain CSS styles only if the screen resolution falls in a certain range, as determined by you.

The specifi c intricacies of responsive web design is not WordPress-specifi c and is outside the scope of
this book, but let’s take a quick look at how it might work.

A common responsive design change on a WordPress site is dealing with the sidebar. On a desktop
browser, you have the screen real estate and generally the sidebar is located on the left or right-hand
side. This is a traditional website. However, on a mobile screen, where space is much more limited,
this sidebar information may not be as important. For example, when viewed on a handheld device,
perhaps the sidebar content gets moved below the primary information. Using a media query block
in your style sheet, you can change the fl ow of your content blocks. This would leave your primary
content, generally considered the most important information front and center on the small screen,
and relegate the secondary content to a less prominent position.

Again, the actual implementations of responsive website design is a book all its own. Many tutori-
als and how-tos are available online for best practices and recommendations. Furthermore, many
responsive WordPress themes are already out there, including Twenty Eleven, for you to try and
explore how they work.

Responsive web design is a popular solution among developers to address the mobile audience, right
now. It’s a solution deployed on many websites. But the more involved the responsive themes get, the
more complicated the process becomes. Anyone remember the days when you made separate website
themes for Netscape Navigator and Internet Explorer? Some days, responsive themes feel the same
way when you’re managing multiple versions of your site for different sizes, under the guise that you
aren’t. You end up troubleshooting and debugging the theme multiple times at the different resolu-
tions. And as devices proliferate, this may become more and more convoluted as you try to match
designs to resolutions. The fl ip side is that you are in complete control and responsive web design
will only be as complex as you make it.

Mobile themes continue to be an up-and-coming area of web development. As smartphones with
reasonably supportable browsers become more commonplace, this type of functionality will become
a requirement for all sites. You will continue to see mobile optimized themes and responsive themes
pop up all over the place. More and more theme frameworks and starter themes are including
responsive elements from the start, making the whole process easier.

SUMMARY

Now that you’ve looked at the user experience that makes your site interesting and available to
readers and devices. Techniques included HTML5 and CSS3 as well as general user experience prin-
ciples. In the next chapter you’ll learn about scaling and securing your site as your audience grows,
specifi cally in terms of performance, scaling and security.

c12.indd 336c12.indd 336 12/6/12 1:23 AM12/6/12 1:23 AM

Statistics, Scalability, Security,
and Spam

WHAT’S IN THIS CHAPTER?

 ➤ Adding traffi c counters to your website

 ➤ Caching your content for higher traffi c loads

 ➤ Keeping your WordPress site healthy and secure

 ➤ Delegating permissions to your users

The past few chapters have covered how to present your fabulous content in effective and
beautiful ways, how to increase the likelihood of visitors fi nding your content, and how to
amass various content sources into your WordPress website. What happens when (if?) this all
succeeds and scores of visitors fl ock to your site? Well, now you have a live and active site,
which opens up a whole range of other challenges you have to think about. In this chapter,
you will look at mechanisms to defi ne and measure success, and then deal with the resultant
attention you’ll get in terms of unwanted content, malicious visitors, and the need to scale in
response to increasing readership.

STATISTICS COUNTERS

Viewing traffi c statistics allows you to see which content on your site is actually bringing
 visitors in. This shows you what content is working and what is not. In addition, traffi c
 statistics can show you valuable information about your visitors and their hardware and
 software setups. This information enables you to tailor your site to accentuate the positive
and support your visitors’ browsers to create a more pleasant and meaningful experience.

13

c13.indd 337c13.indd 337 12/6/12 1:24 AM12/6/12 1:24 AM

338 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

Statistics packages employ a couple of different methods for gathering data, and each has its own
advantages and disadvantages. Likewise, each vendor puts its own spin on the traffi c statistics.

You can gather traffi c statistics in a couple of ways. The grandfather in this realm is to parse your
log fi les. Your web server, if confi gured properly, will create log fi les for each and every request and
error that it handles. Certain statistics packages can parse these logs and create human-consumable
information. Some packages even let you download these logs to your local machine and let it do the
busy work offl ine.

The second method is to put a snippet, usually JavaScript, on each page of your site that reports
back to a central server, which then accumulates the data and makes it meaningful to you. This
method is the current trend.

Each of these packages has an available WordPress plugin. Each package also varies in its specifi c
vernacular. You will have to determine what the truly meaningful metrics are from each package;
for example: visitors versus unique visitors, and hits versus page views versus unique page views.
Deriving useful information from statistics depends on your goals. If you want more viewers, and
are trying to attract attention from Google searches, social network recommendations, and other
external aggregators, you may be happy with an increasing number of visitors who look at only one
page or spend under a minute per visit on your site. A site that aims for more discussion and com-
munity feel should have more return visitors, a longer interval between visitor entry and exit, and
multiple pages viewed by each visitor.

AWStats

AWStats is the granddaddy of web traffi c statistics. Actually, there was a package that predated this
but had many security problems, and AWStats took over as the main statistics package.

AWStats is of the log parsing variety of statistics counters. It can be run on the server, or you can
download the log fi les to another machine and run it if you don’t have access or permission to change
the confi guration of the server running your WordPress site. AWStats requires Perl to run, and it has
been used successfully on both Apache and Microsoft IIS servers, although it requires a little con-
fi guration of the log fi le formats for IIS. To install and get AWStats up and running automatically
for your site, you’ll need to be familiar with server administration tasks. As a log parsing package,
AWStats is designed to run automatically in the background via a cron job on Unix systems.

Because AWStats is a server-side log parsing package, it easily tracks the actual request information
of your website. You can extend the information gathered by adding in the special JavaScript tag
for AWStats to catch browser-side information such as screen size and browser plugin support for
 various technologies.

One good thing about AWStats is that it is one of the original open source log parser statistics pack-
ages. It has survived so long because it is reliable and free and relatively easy to get going. This also
includes many contributed scripts and tidbits of help and support from various sources around the
web. Numerous hosts rely on AWStats, and like any good open source software package, there is a
robust support community around it.

What is not so good about AWStats is it sometimes loses track of dates, mainly because of an unin-
tentional system admin error. In order to provide certain historical information and to process logs

c13.indd 338c13.indd 338 12/6/12 1:24 AM12/6/12 1:24 AM

Statistics Counters ❘ 339

quicker, AWStats maintains cache fi les. If dates get out of order or other time problems exist, these
cache fi les trump any new logs to be parsed and can provide inconsistent data. Basically you have to
go back and rebuild all the cache fi les. Fortunately, with some searching you can fi nd some scripts
to assist in this. Another complaint with AWStats is the browser agents were not updated for a long
time, but this does not appear to be the case anymore.

A couple of different WordPress plugins are available for AWStats, but they are not required to use
AWStats on your site. One plugin for this package basically takes the human-consumable informa-
tion and makes it available on the front end of your site. There is also a plugin that will add the
extended information JavaScript to every WordPress page rendered so that AWStats can capture
additional information. Take a look at Figure 13-1, which shows the basic AWStats reporting
screen.

FIGURE 13-1: Standard AWStats reporting screen

c13.indd 339c13.indd 339 12/6/12 1:24 AM12/6/12 1:24 AM

340 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

You can fi nd more information online at http://awstats.sourceforge.net/.

AWStats is a tried and true option and is good for those sites that want to remain self-contained.
Unlike examples in Chapter 11 which covered leveraging third-party content for added benefi t to
your site, this option runs on your web server and keeps everything together. If you do not want
to include statistics tracking JavaScript calls that make references to other sites, for performance
or JavaScript avoidance reasons, AWStats is a venerable alternative.

Google Analytics

Google Analytics is currently the big dog in hosted web traffi c statistics. It has a clean and generally
intuitive user interface for seeing the reported statistics. It works by injecting a special JavaScript tag
into your rendered page, which reports traffi c and browser information to Google for parsing.

And therein lies the rub with this free statistics package. You are reporting all of your traffi c infor-
mation to Google. Many people use Google for nearly everything these days — e-mail, calendar,
and web traffi c statistics included — although some distrust giving all this information to what
could become Big Brother. While people have some trust in Google, in reality, the company could
use the information they get for any number of purposes. Just think of the wealth of informa-
tion Google has at its fi ngertips related to browser and OS share, and then combine this with the
AdSense and keyword information from your site. Today, Google allows you to track campaigns
and site “reach” by cross-referencing AdWords and AdSense traffi c with Google Analytics data.
The amount of data related to website use and marketing trends is staggering. The trade-off of data
access is a business decision you will have to make.

Google Analytics is defi nitely marketing-oriented. Many powerful tools are built in and learning
how to use them will greatly benefi t the quality of the reported data, including advanced segmen-
tation of your traffi c and custom reporting data. For example, you use Google Analytics to track
which specifi c PDFs from your library site get the most traffi c, and in e-mail marketing, you
track which campaigns generate the most click-throughs. Many resources are available online to
extend Google Analytics.

For example, the following is the jQuery snippet for tracking outbound document links via
Google Analytics. This code is derived from http://css.dzone.com/news/update-tracking-
outbound-click.

/* use jquery to track outbound and file links
 * http://css.dzone.com/news/update-tracking-outbound-click
 */
$("a").click(function() {
 var $a = $(this);
 var href = $a.attr("href");
 // see if the link is external
 if ((href.match(/^http/)) && (! href.match(document.domain))) {
 // if so, register an event
 var category = "outgoing"; // set this to whatever you want
 var event = "click"; // set this to whatever you want
 var label = href; // set this to whatever you want
 _gaq.push(['_trackEvent'],category, event, href);
 }

c13.indd 340c13.indd 340 12/6/12 1:24 AM12/6/12 1:24 AM

http://awstats.sourceforge.net/
http://css.dzone.com/news/update-trackingoutbound-click
http://css.dzone.com/news/update-trackingoutbound-click
http://css.dzone.com/news/update-tracking-outbound-click

Statistics Counters ❘ 341

});

var fileTypes = ["doc","docx","xls","pdf","ppt","pptx", "rtf", "txt"];

$("a").click(function() {
 var $a = $(this);
 var href = $a.attr("href");
 var hrefArray = href.split(".");
 var extension = hrefArray[hrefArray.length - 1];
 if ($.inArray(extension,fileTypes) != -1) {
 _gaq.push(['_trackEvent'],"download", extension, href);
 }
});

Tracking outbound traffi c is useful if you’re trying to use your site as a reference point or expertise
repository, and need to know where readers are going for additional information. Getting detail on
the types of documents referenced gives you a high-level view of what content fl avors are most popu-
lar or helpful. Obviously, you can add additional document types if you point users at OpenOffi ce,
PhotoShop, or other fi le formats.

Many WordPress plugins are available for Google Analytics, which anecdotally serves as a barom-
eter for the popularity of this service. Each offers slightly different functionality, but all essentially
do the same thing, which is to inject the appropriate JavaScript into the page. Some offer additional
features to track the extra events via the control panel. Take a look at Figure 13-2 for a screenshot
of the standard Google Analytics dashboard.

FIGURE 13-2: Standard Google Analytics reporting screen

c13.indd 341c13.indd 341 12/6/12 1:24 AM12/6/12 1:24 AM

342 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

You can fi nd more information online at http://google.com/analytics/.

For all practical purposes, Google Analytics is the de facto standard in web traffi c statistics. Nearly
every site uses it to some extent. But there are alternatives if you do not want to put all your eggs in
Google’s basket. Check out StatCounter (http://statcounter.com/) and Mint (http://havea
mint.com/) for other options. Mint is essentially a self-hosted Google Analytics–like system. There
are also emergent players such as Woopra (http://woopra.com/), which includes real-time visitor
information, that are popping up from time to time.

JetPack by WordPress.com

We would be remiss if we did not mention JetPack by WordPress.com. This is actually a super plu-
gin that bundles several of the WordPress.com hosting features into a single plugin for use on self-
hosted WordPress sites. This plugin has many features, including social media integrations, photo
gallery enhancements and, obviously, because you are in the traffi c statistics chapter, it has this
functionality, too.

JetPack works the same as Google Analytics — by injecting some JavaScript into your rendered
HTML template and reporting back to the WordPress.com servers for tracking. JetPack is built by
WordPress developers for WordPress so it has some specifi city about the way the statistics are pre-
sented with regard to posts and pages.

In addition, JetPack stats are presented right in the WordPress dashboard. Although there are plugins
to make other statistics packages do this through iFrames, the in-Dashboard view is the default method
for JetPack. Basically, JetPack was designed from the ground up to be included in the Dashboard. For
some end users, it’s nice to have everything to manage the site contained in the Dashboard, as seen in
Figure 13-3.

FIGURE 13-3: JetPack by WordPress.com in the Dashboard reporting screen

c13.indd 342c13.indd 342 12/6/12 1:24 AM12/6/12 1:24 AM

http://google.com/analytics/
http://statcounter.com/
http://woopra.com/
http://haveamint.com/
http://haveamint.com/
http://WordPress.com
http://WordPress.com
http://WordPress.com
http://WordPress.com
http://WordPress.com

Cache Management ❘ 343

Also, for quick reference, JetPack can enable a quick view of the last 48 hours in the admin toolbar
at the top of the screen. You can fi nd more information online at http://jetpack.me/.

If the statistics are giving you good news — your site is gaining in popularity, readers are actively
participating in discussions, and search engines are sending new users your way — you’ll likely want
to turn your attention to site scalability. Now you will look at ways to improve the overall perfor-
mance of the WordPress system components.

CACHE MANAGEMENT

WordPress is a content management system, which by its very defi nition means it creates a dynami-
cally driven site. In today’s technology environment, that essentially means that the managed con-
tent and all of its metadata is stored in a database. Every page request has to access the database to
determine which content to be displayed, versus, with a static site, simply fetching HTML fi les from
the web server’s local directory. The trade-off in handing over content management to a database
is that you are going to take a speed hit in the individual page access in exchange for more power-
ful persistence, selection, and organization tools — those features used within the WordPress core.
Basic computer science comes into play here: when you introduce a new abstraction layer that’s
slower than the layer above it, you typically introduce a caching mechanism as well to improve
average access times.

It helps to think of caching in a sequence of access methods, starting closest to the user and work-
ing back to the MySQL database. Each point in the sequence has some caching and tuning that can
be done; however, like all performance tuning work, your mileage varies depending upon the access
patterns, content types, and actual workload moving through that point in the system. Here is one
view of the WordPress caching hierarchy that the following sections walk you through:

 ➤ Browser — Most of your end users’ browser performance is going to come from optimized
CSS, graphics, and JavaScript libraries. Because these affect the single-page load times, we
covered them in Chapter 12’s exploration of user experience.

 ➤ Web Server — WordPress and its plugins are largely written in PHP, an interpreted language
that relies on the web server for an execution container. Improving the web server’s PHP
caching will speed up some portions of the WordPress user-to-database path.

 ➤ WordPress Core — Caching objects used by WordPress effectively build a database results
cache, the same approach taken by highly scalable, MySQL-based sites such as Facebook.
Changing some dynamic page generation to static HTML rendering speeds up page access
at the expense of possible small windows of update inconsistency. In addition, as we covered
in Chapter 11, you can use transients to cache external or complex data for quick retrieval.

 ➤ MySQL — Caching objects at the database layer prevents an eventual disk access, turning
a query into a memory reference where possible. These options are independent of, and fre-
quently complementary to, enabling a caching plugin within the WordPress core.

Again, the actual benefi t provided by each or any of these approaches depends on many factors,
including your hosting provider’s database layer, whether you can confi gure web and database
servers yourself, the size, frequency and complexity of database queries, and the overall load on
your WordPress installation.

c13.indd 343c13.indd 343 12/6/12 1:24 AM12/6/12 1:24 AM

http://jetpack.me/

344 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

WordPress System Complexity

First and foremost, WordPress is a complex system, and honorably so. WordPress simplifi es the
process of content management and broadens its core feature set through the plugin system. But
providing these various hooks and fl exibility comes at the cost of database accesses, PHP process-
ing, handling each plugin’s unique requirements, and any special theme prerequisites. Each plugin
adds additional overhead to the page rendering, and the quality of code in plugins varies from
author to author. Using an execution path analyzer such as WebGrind or KCacheGrind, which
profi les your application to determine where bottlenecks in the code may occur, you can create a
graphic representation of the complexity of a web application. Take, for instance, a plain vanilla
WordPress installation using the default theme. Running a simple page load through this profi ler
and viewing the resulting execution graph, you will fi nd more than 860 different functions called
to render the index page, as shown in Figure 13-4.

FIGURE 13-4: WebGrind visualization of WordPress complexity

Even without being able to zoom in and see the details, you can perceive the inherent complexity of
WordPress. Each of those functions or actions is the WordPress core gathering the necessary data
for your site, including action hooks for linking in plugin and theme functionality.

Each and every thing you add to your site, including that fancy theme control panel that lets you set
particular runtime characteristics of your site and plugins that parse your content for related posts,
creates overhead and more boxes on the execution graph.

There’s no need to be alarmist here and disable plugins and choose overly simple themes. This chal-
lenge is not unique to WordPress. The fl exibility enabled through WordPress, especially the confi gu-
rable runtime fl exibility of WordPress, which is so powerful, is an expensive operation. The alternative
is a statically fi xed set of features that require new built-in code to accomplish new features, rather
than the versatile plugin architecture of WordPress. Each of those plugins and theme hooks adds func-
tionality and features to your WordPress installation. That is why you enabled them in the fi rst place.
Just accept that it is a trade-off in features versus performance, some negligible and some larger.

In practice, your site does not really change that often. You are probably not running the next
Twitter through a WordPress installation (although you can build a reasonable facsimile with the p2
theme) and the content does not change every 30 seconds. Leveraging the ideal situation in which

c13.indd 344c13.indd 344 12/6/12 1:24 AM12/6/12 1:24 AM

Cache Management ❘ 345

your content is viewed signifi cantly more frequently than it’s updated, and allowing for minor
windows of inconsistent updates, you will now look at caching layers from the web server back to
the MySQL installation.

Web Server Caching and Optimization

Improving WordPress scalability through the web server layer involves PHP execution optimization
and web server confi guration changes. In both cases, you’ll need administrator-level access to the
web server confi guration fi les.

You will work your way back to the MySQL queries and object caching, but no matter how you end
up with a list of pages, WordPress relies on PHP to pull the displayed page together and generate
its HTML. PHP is an interpreted language. That means for every execution of the code, the code
must be interpreted and compiled to machine code that a computer can use. This methodology has
pros and cons, and the fl ame war that would ensue is completely outside the scope of this book.
However, you can cache at the PHP execution level with an opcode cache.

A PHP opcode cache attempts to bridge the gap between runtime interpreting and full-on compiled
code. APC (or Alternative PHP Cache) is one such implementation that works to cache and opti-
mize the intermediate PHP code. This method is completely outside of WordPress and works on the
underlying PHP layer of your server, making the actual confi guration outside the scope of this book.

To get APC set up, you will need full access permissions on your server. Once APC is set up, it
caches the compiled PHP fi les that make up the WordPress core. The biggest downside is that you
have to restart the server every time you change a PHP page. If you are making theme changes, this
means a restart each time you modify a template fi le. You can fi nd more information about APC at
http://us3.php.net/manual/en/book.apc.php. Again, the ability to enable APC and start/stop
the web server depends on whether you having suffi cient administrator privileges.

Caching can be further augmented by using memcache and memcached, both of which require server
administration level of implementation. Memcache uses your server’s RAM to cache frequently used
objects. RAM is signifi cantly faster than fi le-based operations, and because memcached runs as a
local daemon, it is also completely outside of your web server. You can fi nd more information about
memcache at http://us3.php.net/manual/en/book.memcache.php and http://memcached
.org/. The key benefi t provided by these in-memory systems is to add another layer of caching
between WordPress and the MySQL database. As discussed in Chapter 6, WordPress caches the last
results retrieved via SQL queries on its MySQL database, but if your site is consistently loading and
then fl ushing the cache as users navigate between several popular sections of the site, this additional
layer of caching will improve performance by keeping the result sets of several recent queries in
memory. What’s happening under the hood is that the WordPress object cache is mapped to objects
managed by memcached, allowing repeat queries to be satisfi ed out of the cache rather than through
another SQL query to the database. This level of caching is the PHP code level caching allowing the
PHP runtime to short-circuit previously cached information. As you’ll see there are many locations
in the execution pipeline where caching can be enabled.

While you are considering the PHP level of the WordPress stack, you should also optimize (and
secure) your php.ini confi guration. PHP has prospered by having so much built-in functionality
that it lowers the barriers of entry and empowers developers to just get the task done. This has been

c13.indd 345c13.indd 345 12/6/12 1:24 AM12/6/12 1:24 AM

http://us3.php.net/manual/en/book.apc.php
http://us3.php.net/manual/en/book.memcache.php
http://memcached.org/
http://memcached.org/

346 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

the boon and the bane for PHP. Take a look at your php.ini fi le and disable extensions you are not
using. You can always turn them back on if you need them in the future.

Also take this opportunity to secure your PHP execution container and help it run faster. Here are
some simple settings. There are probably more, depending on your setup, which you can likely turn
off to improve security and performance:

;Hide PHP for security
expose_php = Off
;Turn off for performance
register_globals = Off
register_long_arrays = Off
register_argc_argv = Off
magic_quotes_gpc = Off
magic_quotes_runtime = Off
magic_quotes_sybase = Off

Finally, on the system administration level, optimize your web server. In most cases, the stock con-
fi guration for your web server is designed to handle the most common basic use cases. Certainly, it
has not been tweaked to match your specifi c server’s capabilities. Apache, for example, comes with
tons of extra modules to handle general-case situations. If you do not use those modules, disable
them. This will reduce the overall memory footprint of Apache.

In practice, it has been possible to tweak Apache to perform better under restricted resources (such
as low-memory virtual private servers) by adjusting the Apache PreFork confi guration. The default
confi guration is pretty generous, and depending on your site’s traffi c and system confi guration,
you can usually pare this down. For example, on a low-traffi c site hosted on a low-memory shared
server, you could edit your Apache2 confi guration fi le to the following, assuming you are using
Apache2:

<IfModule mpm_prefork_module>
 StartServers 3
 MinSpareServers 3
 MaxSpareServers 3
 ServerLimit 50
 MaxClients 50
 MaxRequestsPerChild 1000
</IfModule>

These settings are for a relatively low-traffi c site on a low-memory server. Your results will vary, but
these changes anecdotally affected the web server’s response time for your WordPress installation.
Of course, you will have to adjust these settings to meet your own requirements.

Realize that the LAMP stack has become so popular because often it just works when you install
it. That is because the default confi gurations are general-purpose setups designed to work across a
broad spectrum of situations. You will need to adjust the confi gurations to optimize to your specifi c
situation when the time comes.

Tuning the individual components of the LAMP stack warrants a book unto itself. Like WordPress,
the LAMP development stack is very popular because of its fl exibility and capability to handle
a multitude of different tasks. The management and administration of LAMP components are

c13.indd 346c13.indd 346 12/6/12 1:24 AM12/6/12 1:24 AM

Cache Management ❘ 347

required skills for the full stack solution developer. Invest some time learning your tools and how to
deploy them effectively.

WordPress Object Caching

The goal of web server caching is to keep frequently accessed fi les and popular chunks of code in
memory and ready to serve or execute. Within WordPress, caching has to deliver a request for a
page without going through additional code or database accesses, which really boils down to short-
circuiting the PHP WordPress core and serving up a static representation of your page directly.

Object caching keeps certain frequently used and expensive data sets in memory. This is very similar
to the transient cache discussed in Chapter 11, but while transients are set by you, the developer,
object cache is set by the WordPress core. The fl exibility of object caching means that when certain
information does change, that does not affect the entire cache, but only the objects in the cache that
actually changed. However, object caching still requires the plugin to execute PHP to determine
which aspects of the cache are still valid and also for WordPress to execute the PHP to pull the parts
of the page together for rendering. As previously discussed, optimizing your web server’s PHP envi-
ronment and enabling WordPress level object caching are quasi-independent as a consequence.

There may be times when your content is static enough, or being served so frequently, that you need
to short-circuit the whole PHP and object cache overhead — for example, when your page is being
listed in the top echelons of Reddit and Slashdot. A good way to do this is to have your page ren-
dered to static HTML and served directly by the web server. After all, this is what the web server
was designed to do in the fi rst place.

In our opinion, the best plugin for this is WP-Super Cache by Donncha O Caoimh. WP-Super Cache
is based on and an improvement of the WP-Cache plugin. (See, this one is SUPER!) WP-Super
Cache functions in various modes, including writing out static HTML fi les. However, it does require
mod_rewrite for the static HTML fi les, so this plugin will only work on Apache servers.

WP-Super Cache has an extensive control panel that allows the site administrator to adjust the set-
tings to meet specifi c needs. It even includes a full lockdown mode that prepares for a heavy traffi c
spike.

Other caching plugins such as W3 Total Cache are also viable options. Many caching plugins build
on the basic theme of generating HTML for a page and caching it with the URL used to access the
page as a key. Each plugin will have variations on cache invalidation and page lifetime policies, and
all of them disrupt the general dynamic nature of WordPress page generation. If you’re going to
change your theme, add new plugins, or otherwise alter the fl ow of data from MySQL to the user’s
browser, either disable WordPress caching until you’re sure all of your changes work, or frequently
invalidate and fl ush the cache so that you can see the freshly generated pages as you test.

Transient Caches

Chapter 11 covered transient caches but they are touched on again here. Transient caches are
developer-defi ned caches that you set up in your code. These are commonly used for storing
remotely fetched data in your local site for repetitive reuse. This was the primary case for them in
Chapter 11.

c13.indd 347c13.indd 347 12/6/12 1:24 AM12/6/12 1:24 AM

348 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

Another use for transient caches is to store complex computed data. For example, you might have
a function in your functions.php template that does a complicated query across your entire
WordPress Multisite network to generate a network-wide navigational aid. This data likely does not
change very often, but the computation of the query is signifi cant enough that it may slow down
page rendering.

With a transient cache, you can perform the complicated query and store it in a transient cache so
the next visitor does not have to wait for the SQL query to execute. Using a transient in this nature
improves site performance by reducing the queries to the database.

MySQL Query Cache

While conducting research for this book, we (the authors) set up a stock WordPress installation
using the Twenty Eleven theme and no additional plugins — essentially an out-of-the-box instal-
lation. To render the index page, WordPress used more than 20 MySQL queries. Try it yourself by
adding these two PHP lines to your footer.php template fi le:

<?php echo get_num_queries(); ?> queries.
<?php timer_stop(1); ?> seconds.

Reload your page and you will see the number of queries and the time it took at the bottom of your
page.

You have to evaluate your site, but odds are the database-persisted content is not changing quickly
enough that you need to make all these database calls for every page load. The translation of a
URL into a MySQL query was covered in Chapter 5, and Chapter 6 looked at the underlying
data models, so the volume of database traffi c required for the basic index page shouldn’t be too
surprising.

WordPress caching improves access times to content extracted from MySQL. If you want to further
improve MySQL performance and make it more responsive to queries from the WordPress core,
you’ll want to explore the MySQL query cache. The MySQL query cache stores the results of select
statements, so that if an identical query is submitted, the already retrieved results can be immedi-
ately pulled from the system RAM and returned. This will signifi cantly increase your response time,
as long as your data is not changing that much; under higher rates of change you may not see the
updates immediately.

To enable the MySQL query cache, you will have to edit your MySQL confi guration fi le on the
server, assuming you have adequate permissions at your hosting company to do so. If you edit your
MySQL confi guration fi le, you can raise the memory limit. For example:

enable 16 MB cache
query_cache_size = 16M

Be careful not to go overboard here. Allocating too much RAM to MySQL caching will adversely
affect other subsystems on your server. It is always a balance. Even just enabling this cache
creates a management overhead in MySQL, but generally speaking, this trade-off works in
your favor.

c13.indd 348c13.indd 348 12/6/12 1:24 AM12/6/12 1:24 AM

Load Balancing Your WordPress Site ❘ 349

LOAD BALANCING YOUR WORDPRESS SITE

At some point, you (let’s hope) hit the performance limit of a single software stack on one physical
server. That’s when you may want to load balance your WordPress site with one or more additional
servers. You may decide to add servers either for scalability to handle more requests, or as a failover
precaution to increase the availability of your site. Whatever the reason, load balancing your site
gets you both of these features, but it is a complex issue. Now you will briefl y consider some of the
challenges you will encounter when attempting to load balance a dynamically generated site.

First and foremost, you need a means to load balance. The simple approach of using round-robin
DNS to bounce successive HTTP requests between your servers as needed will cause problems,
especially with session cookies. You will need a legitimate load balancer to handle this. The load
balancer could be a software package such as Pound (http://www.apsis.ch/pound/) or a full
hardware solution such as an F5 BIG-IP (http://www.f5.com/products/big-ip/). Both will
handle the session stickiness and load balancing for you.

The second challenge is keeping your dynamic data in synchronization between your two (or more)
web front-ends. Consider that your site administrator could effectively log in to either web front-
end, post new content, and upload a graphic asset to the uploads directory. However, the next
request could be load balanced to the other server, where this content may not exist.

Look at the uploads directory fi rst. This content is uploaded from the WordPress Dashboard to the
uploads directory of that WordPress installation. By default, content is uploaded into /wp-content/
uploads/. However, you can change the uploads directory in your Settings ➪ Media Dashboard.
Depending on where you set your uploads folder, you could also reap the benefi t of having shorter
asset URLs.

At this point you have options. One option is to have a shared folder that both web servers can
access. Most likely this would be an NFS/Samba share on a third server, which serves as your
MySQL server. A second option is to use rsync or a similar tool to coordinate uploads between the
two servers and make sure each has the same assets in place. Using the shared folder makes the assets
immediately available, but introduces a single point of failure. Alternative, rsync’ing the assets to
multiple locations replicates the data, removing a single point of failure, but introduces a time delay
on when the asset is available at the remote locations. Pick your poison depending on your needs.

The second challenge is your dynamic data that is stored in the database. Assuming your database
is not the bottleneck and the reason for load balancing, you could use a third server as your data-
base server. Both web servers can then read and write from the same source. This can be a more
secure deployment architecture when your database server is not directly addressable on the public
Internet, but it also creates a potential single point of failure. Technically, you are only load balanc-
ing the front-end web servers in this situation.

Adding a second database server increases the redundancy but introduces the problem of keeping
two MySQL database tables in synchronization. MySQL servers can be confi gured for replication in
a master-slave setup. Technically, this again is not load balancing because only one server is being
accessed at a time, but this type of confi guration does provide additional redundancy. Changes to
the master MySQL database are replicated to the slave database in near real time via a journaling
log. Should the master database fail, the slave has a full set of data for a manual cut over.

c13.indd 349c13.indd 349 12/6/12 1:24 AM12/6/12 1:24 AM

http://www.apsis.ch/pound/
http://www.f5.com/products/big-ip/

350 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

Finally, there is also a special WordPress-specifi c solution for multiple database servers. HyperDB
(http://codex.wordpress.org/HyperDB) was created by Automattic to handle the requirements
of WordPress.com traffi c. HyberDB is a full replacement for the built-in WordPress database access
layer and includes functionality for using multiple databases, sharding or partitioning your database
across multiple servers, and also replication and tiered failover. Unfortunately, the documentation is
far from complete.

As you can see, load balancing for performance and high availability is an extremely complex topic.
There are countless variations of systems in place to handle a vast expanse of needs and require-
ments. This short overview of the topic certainly skirts over many nuances and challenges being
faced when deploying WordPress into a high-availability environment. Cloud computing and con-
tent delivery networks are hot topics right now, and you should expect to see WordPress utilizing
these services for critical aspects and redundancy as those technologies and services mature.

DEALING WITH SPAM

As your WordPress site gets noticed and generates traffi c, it becomes a natural target for spammers.
If you’re noticing posts on your site that you don’t expect, or see users in the Dashboard that you
didn’t create, you have other security problems that are covered later in this chapter. Most likely,
your posts will accrete a variety of spam comments as a side effect of being popular.

You can recognize spam by a list of links within the comment, or content-free comments saying
that the poster enjoyed your writing, with an attached URL or source address that invites you to a
less-than-reputable destination. In either case, the goal of comment spam is to generate more web
content that points back to the spammer’s site, taking advantage of the page popularity ranking
algorithms used by Google and others that give weight to incoming links. The best way to deal with
spam is to simply get rid of it, denying spammers the opportunity to use your site to boost their own
visibility.

There are three basic approaches to dealing with the problem: make it impossible for anyone to
leave comments, increase the diffi culty of a spammer sneaking a comment onto your site, and enable
auto-detection of common spam patterns. Obviously, disabling comments (through the Dashboard)
is a bit harsh and defeats the goals of establishing conversation with your readers. On the other
hand, if you decide to take this drastic step, remember that changing the settings for posts on the
control panel affects future posts only; anything already on your blog will still have comments
enabled unless you go through the Dashboard and turn them off individually. If you don’t mind an
even greater bit of brute-force effort, you can remove the wp-comments.php fi le from the WordPress
core, which somewhat unceremoniously puts an end to the ability to comment on your posts. We
recommend something a bit more subtle.

Comment Moderation and CAPTCHAs

One approach to comment spam is to slow down the spammers; this simple approach, however,
slows down valid commenters as well. You can require commenters to register as site users before
being allowed to post comments, as discussed later in this chapter, but that has the downside of pre-
venting passing-by users from adding their thoughts. It also requires that you stay on top of the user

c13.indd 350c13.indd 350 12/6/12 1:24 AM12/6/12 1:24 AM

http://codex.wordpress.org/HyperDB
http://WordPress.com

Dealing with Spam ❘ 351

registration, as you may see seemingly valid users that are created purely for the purpose of posting
spam to your blog.

Moderation is another tool in the slow-but-don’t-stop vein; you can hold all comments for modera-
tion or require all commenters to have a previously approved comment. In effect, you’re putting the
burden of spam detection on yourself, looking at each comment as it appears and deciding whether
to post it to your site or fl ush it. Again, an innocuous looking comment may be the approval step-
ping stone for an avalanche of spam later on from the same user. As with many security mecha-
nisms, the bad guys are continually getting smarter and more automated, and testing the edge
protection and response of the systems they want to infi ltrate.

A variation of the brute-force and moderation method is to blacklist IP addresses that seem to be
the primary sources of spam; the access controls can be put in your .htaccess fi le. Again, this is
perhaps a bit like hunting bugs with an elephant gun, as you’re likely to block valid IP sources from
common carriers who are unfortunately home to some low-limit spammers. Also, spammers jump
IP addresses easily using botnets and other resources, so this can be a never-ending war that you
cannot keep up with.

Enter CAPTCHA methods — based on a phrase coined at Carnegie Mellon University that osten-
sibly stands for “Completely Automated Public Turing test for telling Computers and Humans
Apart” — that impede spammers’ ability to post unwelcome comments by requiring them to enter
some additional, dynamic piece of information. There are quite a few CAPTCHA-generating
plugins for WordPress, all of which add a displayed word or math problem to the end of the com-
ment posting form, requiring the user to enter the correct information before the form is submitted.
The simplest of these, the Math Test plugin, displays a two-term addition problem that must be
solved by the user. The basic idea is that an automated spamming process won’t be able to recognize
the distorted words or solve the problems, alleviating the spam at the point of insertion. There’s
some debate as to the effectiveness of CAPTCHAs, with their failure rates suggested to be as high
as 20 percent. You’re also adding a step for commenters, albeit a trivial one. If your site attracts a
large, non-English speaking audience, CAPTCHAs depending upon wavy English words will be
effective, but only in preventing valid comments from frustrated users.

The WP–Spam free plugin is an inverse CAPTCHA; it tries to ensure that the commenter is using
a browser, and not coming in via an automated process. This combination of JavaScript tricks is a
variation on the spam impedance theme, and like the others, its effectiveness and user impact will
vary depending upon the demographics of your site viewers.

Automating Spam Detection

The fi rst step in automating spam detection is blacklisting certain types of posts or particular
words. In the Dashboard, choose Settings ➪ Discussion in the Comment Moderation box, you’ll
fi nd an option to block any comment that contains more than a particular number of links. Don’t
set this to zero, or anyone who includes his own site URL in a comment is going to be fi ltered. This
cuts down on the obvious spam messages, however. Similarly, adding words to the blacklist like
“Vicodin” will eliminate the faux-pharmacy spam, but if you’re perturbed by offers of fake Rolexes,
don’t add “watches” to the blacklist or you’ll drop any comment that uses “watches” as a verb as
well as a fake product noun. Word blacklists are universally effective in blocking comments with
those words, irrespective of context.

c13.indd 351c13.indd 351 12/6/12 1:24 AM12/6/12 1:24 AM

352 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

Fortunately, WordPress has the Akismet plugin built in for dealing with comment spam that relies
on a crowd-sourced blacklist and is transparent to users. Go to http://akismet.com/ to register
for an API key for the service; when you open up the Dashboard and confi gure the Akismet plu-
gin, you’ll need this to make sure your instance of WordPress can connect to the Akismet service.
Effectively, Akismet takes each comment as posted, runs it through a database of spam comments
hosted by Automattic, and decides whether or not to mark the comment as spam. Statistics on the
akismet.com site claim that upwards of 80 percent of all comments are spam, and that they have
caught and marked more than 55 trillion spam comments.

There are other implementations of the Akismet service besides the built-in plugin, and Akismet
works on other content management systems as well. Akismet is priced based on the size and type
of your site, ranging from free to $50 per month. While the freely available nature of WordPress and
most of its related plugins and themes has been highlighted, paying for Akismet spam protection is
also highly recommended. Compared to the cost of a commercial WordPress hosting option, most
low-end Akismet plans are minimal in cost. You remove a time-consuming administrative burden
from your plate for a few dollars a month.

SECURING YOUR WORDPRESS SITE

Unfortunately, with success and popularity you also become a target. WordPress is a successful
and popular platform for websites and with that brings the attention of the hackers and bad guys.
It is simple economics that bad guys looking to build a network of sites will look to the most wide-
spread applications and attack their vulnerabilities. Unfortunately, one of the vulnerabilities with
WordPress (similar to PHP) is that, because of the low barrier of entry and ease of use, users who
are generally not too tech savvy or security minded can utilize WordPress without recognizing the
full security ramifi cations involved.

This portion of the chapter covers some of the basic security principles you should employ when
using WordPress. Some of them seem like common sense, but surprisingly are not put into practice
on the average site. These are all preventative measures that you need to put into place before you
really need them. As Benjamin Franklin said, “An ounce of prevention is worth a pound of cure.”
The time you spend protecting yourself will pay off should you have to work on cleaning up an
exploited website.

Staying Up-to-Date

Rule number 1 is to always stay updated. WordPress developers are constantly working to make
WordPress a better, more secure, and stable platform. This is one of the key advantages to open
source software. Many developers, each with different skill sets, are looking over the code every day
and performing various audits and updates to improve the overall codebase.

Updates often fi x security concerns before there are exploits in the wild. Generally, exploits have
been targeting outdated versions of WordPress while consistently updated sites are immune.

WordPress implemented new notices in the Dashboard letting you know when there is a new version
available. Another new feature is the ability to upgrade WordPress directly from the Dashboard.

c13.indd 352c13.indd 352 12/6/12 1:24 AM12/6/12 1:24 AM

http://akismet.com/
http://akismet.com

Securing Your WordPress Site ❘ 353

The WordPress team has been working to make upgrading as painless as possible. This new feature
lets the site administrator update the WordPress core right from inside the web interface.

If your web server has the ability to write to the fi les in your WordPress directories, then the auto-
matic upgrade functionality works. If not, WordPress prompts for your FTP credentials to update
the fi les for you. Both of these situations are of concern. In general, your web user should not have
write permissions to your entire web root. This is just asking for trouble, especially on a shared
hosting platform, excepting, of course, certain directories such as the uploads folder that must be
writable by the web user in order to function.

Second, it is not clear how this FTP credential information is stored or used. Although it is unlikely
anything nefarious is happening, users are not encouraged to key in FTP (an unsecured protocol at
that) credentials into any form that asks for it. However, if you do decide to go this route, you can
set some WordPress confi guration variables in your wp-config fi le that will further automate the
FTP process.

There is defi nitely a balance here between the simplicity of keeping the WordPress core updated,
which is of the utmost importance, and with keeping the web root security intact.

Another feature is the update notices in the Dashboard and changelogs. The notices alert you to
pending updates to WordPress core, themes, and plugins that you have installed. Many of these
updates include changelogs that let you keep tabs on what is actually changing in the new version.
This can help you make a decision on if the update is critical and needs to be performed immedi-
ately, or whether it can wait until a scheduled maintenance window. It is up to the developer to keep
the changelog information current.

Hiding WordPress Version Information

This section is about concealing which specifi c version of WordPress you are running from the pub-
lic eye. Honestly, there are mixed opinions on this. WordPress evangelists would say leave it in there.
Say it loud and say it proud. On the other hand, security-conscious users would say take it out. It is
a way for the bad guys to easily fi nd vulnerable sites, so why give it up?

Then again, the WordPress developers have a good point. For a botnet scanning for vulnerable sites,
it does not make sense to waste time looking for specifi c WordPress versions, when a botnet can just
run the attack against the site. It will take the same amount of time, so why take twice as long? If
you are going to get hacked because of your old version of WordPress, hiding the version number is
not going to stop it. You should have been upgrading anyway.

In a standard WordPress installation, the version number is shown in the HTML source code as a
meta tag for anyone to view the source and see. However, if you want to remove this meta tag, there
are several plugins that can do it for you. Or you can edit your functions.php fi le and at the bot-
tom add the following:

Remove_action('wp_head', 'wp_generator');

Also, be on the lookout for certain themes and plugins that include version information in your
header.

c13.indd 353c13.indd 353 12/6/12 1:24 AM12/6/12 1:24 AM

354 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

Limit Login Attempts

Further precautions include limiting the number of login attempts on your WordPress control panel.
This can prevent or discourage bad guys from brute-force attacking your site. By default, WordPress
will allow unlimited invalid login attempts, meaning that an automated script could be whacking
away at your site all day long.

The Limit Login Attempts plugin by Johan Eenfeldt looks to remedy that. After a confi gurable
number of invalid login attempts, that IP address is locked out for a specifi ed period of time.
This slowdown reduces the attractiveness of your site to an automatic attack script. You can fi nd
more information about Limit Login Attempts at http://wordpress.org/extend/plugins/
limit-login-attempts/.

Using Good Passwords

Furthermore, use good passwords for your account. Not just your WordPress accounts, all of your
online accounts. Yes, we all have hundreds of passwords to remember, but there are tricks to using
good passwords, including mnemonics and password safes. WordPress has a nice JavaScript indica-
tor when you are setting your password to let you know the quality of it. Remember that you can
pick a good password that is something you remember, or use a secure password-safe application to
store it. Your password is your key to your kingdom, so make it a good key.

Changing Your Table Prefi x

This is another method to obscure the default attack vector. By default, new WordPress installations
have a table prefi x of wp_. That means every table in your WordPress database has a very predict-
able name, making it easier for attackers to form an assault on your site. If you are deploying a new
site, set something unique for this prefi x.

If you are already on an existing site, plugins are available that can handle renaming your tables for
you. The WP-Security Scan by Michael Torbert, which is covered later in this chapter, offers the
functionality to change your table prefi xes for you. Make sure you make a database backup before
performing this task because the implications if it does not work are quite severe.

Moving Your Confi guration File

By default, the WordPress confi guration fi le is located in the root of your website. In the event that
PHP stops functioning on your web server for any reason, you run the risk of this fi le being dis-
played in plaintext, which will give up your passwords and database information.

You can safely move the wp-config directory up out of the root directory. This will stop it from
ever being accidentally served. WordPress has built-in functionality that will automatically check the
parent directory if it cannot fi nd a confi guration fi le.

In some situations on certain hosts, this is not an option. An alternative is to set your .htaccess to
not serve up the wp-config fi le. Add the following line to your .htaccess fi le in the root directory:

<FilesMatch ^wp-config.php$>deny from all</FilesMatch>

c13.indd 354c13.indd 354 12/6/12 1:24 AM12/6/12 1:24 AM

http://wordpress.org/extend/plugins/limit-login-attempts/
http://wordpress.org/extend/plugins/limit-login-attempts/

Securing Your WordPress Site ❘ 355

Moving Your Content Directory

Since WordPress 2.6, you can move your wp-content directory. This way, you can take a large por-
tion of your WordPress installation and move it to a non-default location. Again, this makes hoops
for the bad guys to jump through, hopefully discouraging them.

Make two additions to your wp-config fi le:

define('WP_CONTENT_DIR',
 $_SERVER['DOCUMENT_ROOT'].'/mysite/wp-content');
define('WP_CONTENT_URL',
 'http://example.com/mysite/wp-content');

Some plugins may have diffi culty dealing with a nonstandard directory structure. If you are expe-
riencing problems with certain plugins, you can add the following lines to your wp-config fi le for
compatibility:

define('WP_PLUGIN_DIR',
 $_SERVER['DOCUMENT_ROOT']. '/mysite/wp-content/plugins');
define('WP_PLUGIN_URL',
 'http://example.com/mysite/wp-content/plugins');

Moving your content directory does not in and of itself make your site more secure. What it does
is prevent the automated tools used by attackers from working on your site. These automated tools
are looking for the least common denominator of sites; so essentially, they are looking for stock
WordPress confi gurations with default settings because that will give them the most bang for the
buck. Security through obscurity is not security, but it does make your site a less attractive target.

Using the Secret Key Feature

In your WordPress config fi le are secret key values for encrypting user cookies. There are four keys
(since WordPress 2.6) to establish the secret, or private, key used by WordPress to protect session
information stored in user cookies. Each key also has a “salt value” that is used by the cryptography
functions to reduce the likelihood that a directory-based attack would discover a password through
brute-force. A potential attack would have to start with both the guessed password and the salt
value. If you don’t specify salt values, WordPress generates them.

You should set both the secret keys and salt values to make the encryption of user session data for
your site stronger. Either make them up or visit https://api.wordpress.org/secret-key/1.1/
salt and get randomly generated ones.

You can change these keys at any time, but it will force anyone who is logged in to log in again.

define('AUTH_KEY',
 'C?m92_K%B[7,,Onl(&WG,oodC9ue1y;aUK[e,.E+([Y?0D+/]i*!PkF?I:U+C^6');
define('SECURE_AUTH_KEY',
 'oesV)E.Z<y@o.o1eM|c@7)t^SL:06WjDENo;t_j.e4(eX@8#`~gy1S&R*Gf!k19+');
define('LOGGED_IN_KEY',
 'Y?fgU+EleuDKE3n-^~cF%IbgTR,ep+UZE={>8,j,EO+7a-u|c]EH;|G@|4ZS#a+-');

c13.indd 355c13.indd 355 12/6/12 1:24 AM12/6/12 1:24 AM

http://example.com/mysite/wp-content
http://example.com/mysite/wp-content/plugins
https://api.wordpress.org/secret-key/1.1/salt
https://api.wordpress.org/secret-key/1.1/salt

356 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

define('NONCE_KEY',
 'g6f<q6QB| 1u59Q]~(r1B@<dl2f]rkQVg7HMx}!B#OzPPyG[.N{RV<yA2l+=.r7#');
define('AUTH_SALT',
 '}e@Vd[W0d}?u&Ps>MyO1NZT>tU[Kg4QW%+y-fyRU|d-PWAV7az+a0K6qx-{iwSv)');
define('SECURE_AUTH_SALT',
 '9Nbtg_v1D}?f/rj*/p;a[)}jq-y&YVxqA6.KSk;am:sjH}-!uN6n5]i?NIuW&9<l');
define('LOGGED_IN_SALT',
 'pQ;TXDxRN`TmDl$+gU0EgG-1OMYM*[p6R}07)7Fs*/%Yec]t|E+piqLf1.t2kLTc');
define('NONCE_SALT',
 '~<A7*5IS&N:Gy!:yYM`LuggB0^1RIjSy:QEOP@.TZs!Dq-73i3KQYa:3j1WYIeUg');

Do not use these values; set up your own.

Forcing SSL on Login and Admin

You can force your visitors and administrators to log in via an SSL-encrypted page, assuming you
have that set up already. Edit your WordPress config fi le and add the following fl ag:

define('FORCE_SSL_LOGIN', true);

You can also force the entire WordPress Dashboard to be served over HTTPS. Again, edit your
config fi le and add the following line:

define('FORCE_SSL_ADMIN', true);

Please do not just blindly enable these features. This can be problematic if you are using a self-
signed certifi cate on your site. Note that WordPress likes to build internal post links using the URL
that you are accessing the Dashboard with. So, if you forced SSL on the Dashboard and are using
a server self-signed certifi cate, the internal post URLs will do the same and your visitor will be
have to accept the certifi cate also. Generally, this is not a good practice. Work with your hosting
provider to obtain a certifi cate from a respected certifi cate provider.

Apache Permissions

Permissions will vary depending on your confi guration, but a good rule of thumb is to set fi les to
644 and folders to 755. If you cannot upload to the uploads folder, adjust those privileges alone.
Generally, the fi les are set to be in the same group as the web server and owned by the local user.
For example:

drwxr-xr-x 8 ddamstra www-data 4096 2012-09-02 16:34 .
drwxr-xr-x 8 ddamstra root 4096 2010-12-18 20:39 ..
-rw-r--r-- 1 ddamstra www-data 9835 2011-03-15 13:17 apple-touch-icon.png
-rw-r--r-- 1 ddamstra www-data 41662 2010-12-07 15:04 favicon.ico
-rwxrwxr-x 1 ddamstra www-data 3456 2010-12-07 14:51 .htaccess
-rw-r--r-- 1 ddamstra www-data 395 2012-09-02 16:34 index.php
-rw-r--r-- 1 ddamstra www-data 9177 2012-09-02 16:34 readme.html
-rwxrwxr-x 1 ddamstra www-data 1137 2011-07-13 09:07 sitemap.xml
-rwxrwxr-x 1 ddamstra www-data 514 2011-07-13 09:07 sitemap.xml.gz

c13.indd 356c13.indd 356 12/6/12 1:24 AM12/6/12 1:24 AM

Securing Your WordPress Site ❘ 357

drwxr-xr-x 6 ddamstra www-data 4096 2012-09-02 16:35 .svn
-rw-r--r-- 1 ddamstra www-data 4264 2012-09-02 16:34 wp-activate.php
drwxr-xr-x 10 ddamstra www-data 4096 2012-09-02 16:34 wp-admin
-rw-r--r-- 1 ddamstra www-data 1354 2012-09-02 16:34 wp-app.php
-rw-r--r-- 1 ddamstra www-data 271 2012-09-02 16:34 wp-blog-header.php
-rw-r--r-- 1 ddamstra www-data 3522 2012-09-02 16:34 wp-comments-post.php
-rw-r--r-- 1 ddamstra www-data 3177 2011-02-24 09:15 wp-config-sample.php
drwxr-xr-x 7 ddamstra www-data 4096 2010-11-30 15:57 wp-content
-rw-r--r-- 1 ddamstra www-data 2726 2012-09-02 16:34 wp-cron.php
drwxr-xr-x 9 ddamstra www-data 4096 2012-09-02 16:34 wp-includes
-rw-r--r-- 1 ddamstra www-data 1997 2011-02-24 09:15 wp-links-opml.php
-rw-r--r-- 1 ddamstra www-data 2341 2012-09-02 16:34 wp-load.php
-rw-r--r-- 1 ddamstra www-data 29084 2012-09-02 16:34 wp-login.php
-rw-r--r-- 1 ddamstra www-data 7712 2012-09-02 16:34 wp-mail.php
-rw-r--r-- 1 ddamstra www-data 9916 2012-09-02 16:34 wp-settings.php
-rw-r--r-- 1 ddamstra www-data 18299 2012-09-02 16:34 wp-signup.php
-rw-r--r-- 1 ddamstra www-data 3700 2012-09-02 16:34 wp-trackback.php
-rw-r--r-- 1 ddamstra www-data 2788 2012-09-02 16:34 xmlrpc.php

Note that this will most likely break some of the cool functionality such as one-click upgrades,
and theme and plugin installations from the control panel. In this case, you may have to provide
WordPress with the FTP credentials to your site for this functionality to return. See the section,
“Staying Up-to-Date,” in this chapter for more on why this is a concern.

MySQL Credentials

Set your MySQL login and permissions correctly. For the love of all things open source, do not con-
nect your WordPress site to your database with the MySQL root user. Set up a special user for each
WordPress site. Make sure it only has access to the database it needs, and make sure it only has
the privileges it needs. For example, your WordPress database user never needs to grant access to
another user.

Recommended Security Plugins

Being vigilant is an important step in security. You cannot expect what you do not inspect. That is,
you cannot expect things to be working, if you do not check in on them periodically. Some plugins
help with security maintenance and confi guration on your WordPress installation. Just like anti
virus and malware detection on workstations, these tools are here to assist in strengthening your
security posture.

WP-Security Scan

WP-Security Scan by Michael Torbert, shown in Figure 13-5, provides an overall security scan of
your WordPress installation. It checks many of the items listed previously, including WordPress
version, table prefi x, and absence of the admin account. It also includes a fi lesystem scanner to
verify that the permissions are set to the recommended settings. WP-Security Scan provides a nice
mechanism to make sure the base settings are in line with a good security posture. We look forward
to Torbert adding new features in future releases.

c13.indd 357c13.indd 357 12/6/12 1:24 AM12/6/12 1:24 AM

358 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

You can fi nd more information on WP-Security Scan at http://wordpress.org/extend/plugins/
wp-security-scan/.

WordPress Exploit Scanner

WP-Exploit Scanner is another plugin by Donncha O Caoimh. The Exploit Scanner scans your fi les,
posts, and comments for suspicious information. Basically, this is a forensics tool for you to use to
make sure your site has not been compromised. This plugin does not remove anything but it creates
a list of suspicious content for you to review. The challenge here is that even with the fi ltered list,
you have to have some idea what you are looking for. Running this plugin may result in false posi-
tives related to JavaScript from plugins and the WordPress core fi les.

You can fi nd more information about the WordPress Exploit Scanner at http://wordpress.org/
extend/plugins/exploit-scanner/.

WordPress File Monitor

The WordPress File Monitor plugin by Matt Walters, shown in Figure 13-6, looks for fi les in your
WordPress installation that have been added, changed, or deleted. The plugin can be confi gured to
send an e-mail should any fi le system activity occur. In addition, this plugin can be set to exclude
certain directories, such as the uploads folder or fi le-based cache folders.

FIGURE 13-5: WP-Security Scan result

c13.indd 358c13.indd 358 12/6/12 1:24 AM12/6/12 1:24 AM

http://wordpress.org/extend/plugins/wp-security-scan/
http://wordpress.org/extend/plugins/wp-security-scan/
http://wordpress.org/extend/plugins/exploit-scanner/
http://wordpress.org/extend/plugins/exploit-scanner/

Securing Your WordPress Site ❘ 359

If fi le system changes are made, this plugin sets a warning in your WordPress Dashboard and also
sends you an e-mail to alert you of the changes. This can be very handy in the event that something
bad happens but will also trigger false alarms when you are performing updates. It is assumed that
you know when you are doing updates and therefore can weed these out.

You can fi nd more information about WordPress File Monitor at http://wordpress.org/extend/
plugins/wordpress-file-monitor/. This plugin has not been updated in a while, but we continue
to use it on our non-Multisite sites.

WordFence Security

WordFence Security by Mark Maunder is a comprehensive security plugin. This plugin checks your
installed core fi les against the current revision in the WordPress repository. It checks both your core
WordPress fi les as well as plugin fi les. Whereas the WordPress File Monitor is looking for new fi les
added to your site root, potentially dropped in by bad guys, WordFence Security is evaluating your
core and plugin fi les for changes or variations from the source code.

WordFence also scans your actual content for malware and phishing signatures as seen in
Figure 13-7, and it has many other security features covering a large spectrum of potential
threats or attack vectors.

FIGURE 13-6: WordPress File Monitor alert

c13.indd 359c13.indd 359 12/6/12 1:24 AM12/6/12 1:24 AM

http://wordpress.org/extend/plugins/wordpress-file-monitor/
http://wordpress.org/extend/plugins/wordpress-file-monitor/

360 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

One of the more interesting features of WordFence is the live traffi c information that ties into a soft-
ware-level fi rewall. Using the live traffi c and fi rewall features, you can block specifi c IP addresses
or countries from accessing your site. This can help when an attacker is attempting to compromise
your site. Furthermore, you can confi gure WordFence to automatically block or throttle access for
IP addresses when usage from those traffi c sources exceeds limits that you set.

You can fi nd more information about WordFence Security at http://wordpress.org/extend/
plugins/fence/.

USING WORDPRESS ROLES

Any smart manager learns how to delegate work, and a site manager should also learn this impor-
tant skill. The WordPress role system allows you to assign different privileges to different user
accounts. WordPress’s default roles cover the basics and start to establish a publishing workfl ow
through the fundamental capabilities of each role. These can be further extended through various
plugins to create new roles with additional capabilities for specifi c tasks.

If you are the only person managing your site, you probably do not need roles. It boils down to you,
the site administrator, and them, the unregistered masses. This setup, with no ability for a new user

FIGURE 13-7: WordFence Scan Results

c13.indd 360c13.indd 360 12/6/12 1:24 AM12/6/12 1:24 AM

http://wordpress.org/extend/plugins/fence/
http://wordpress.org/extend/plugins/fence/

Using WordPress Roles ❘ 361

to register, is a secure way to operate your site. But it also discourages participation. Eventually
you may want to open it up to allow regular visitors to log in and reap some additional ease-of-use
benefi ts.

You assign roles to users in the user management dashboard. Each user must be assigned to a role,
and your site will have a default role for registered users. Setting each of these appropriately in the
Dashboard depends on your actual needs and the security permissions you need to delegate.

Subscriber Role

The Subscriber role is essentially the same as a non–logged in visitor. So why do you need it if this
person can read posts and post comments the same as a guest visitor?

You may need the Subscriber role for a couple of reasons. First, you may want to allow this role for
regularly returning visitors. If they are registered, they get some advantages such as not having to
fi ll out all the fi elds to post a comment each time. Second, as a spam control measure, you may only
allow registered Subscribers to post comments. This will weed out many of the automated spam-
bots. Finally, certain plugins require this base level for functionality.

Contributor Role

The next step up is the Contributor role. The Contributor role is the fi rst step in delegating respon-
sibilities to your site users. The key privilege for Contributors is they can create new posts, but they
cannot publish them to the site. That requires a higher role. This allows users to contribute informa-
tion to your site, but you still maintain control over what is actually published. As you can see, this
is a fl edgling workfl ow for content publishing.

In addition to creating draft posts, Contributors can also edit their own posts at any time and delete
their own unpublished posts. Contributors cannot upload fi les and images to be used in their own
draft posts.

Author Role

Authors are the next level up the hierarchy. Authors are more trusted individuals than Contributors
in that they can upload fi les to be used in their posts and can publish their posts without approval.
Likewise, Authors can edit and delete their own published posts.

Authors are restricted to working with their own posts. They can read and comment on any post
just like any other user, but they can only modify their own content.

Editor Role

The Editor role introduces two new capabilities. Up until this role in the hierarchy you have been
restricted to posts, but the Editor role can also work with pages. In addition, the Editor is privileged
enough to modify any content on the site.

This role cannot manage users or site settings such as themes and plugins, but the actual content is
wide open. In practice, this is the role you assign to the client for a managed WordPress install. It

c13.indd 361c13.indd 361 12/6/12 1:24 AM12/6/12 1:24 AM

362 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

provides enough capabilities that the client can manage the day-to-day content of the site, but not so
much that he can muck around with the overall site settings and mess things up.

Note, however, that Editors cannot manage menus or widget areas, therefore limiting the extent of
the content they can manage.

Administrator Role

This is the root level role. Everything in the WordPress Dashboard is open to an Administrator so
you want to assign this role carefully. This role can modify users, themes, plugins, and all of the
content.

Make sure your Administrator users are security conscious and using good passwords. Should bad
guys get access to your Administrator account, they will have full access to your site.

Super Admin Role

This role is only used on Multisite Networks. Essentially, the primary purpose of this role is to
 manage the different WordPress sites in the Network and manage the network overall.

Role Overview

Table 13-1 shows a simplifi ed overview of the capabilities assigned to each role. For more exact
information about the capabilities of each role, visit the WordPress Codex at http://codex.word
press.org/Roles_and_Capabilities.

TABLE 13-1: Capabilities of Each WordPress Role

CAPABILITY

SUPER

ADMIN ADMINISTRATOR EDITOR AUTHOR CONTRIBUTOR SUBSCRIBER

Manage network X

Manage themes X X

Manage plugins X X

Manage users X X

Manage site options X X

Moderate comments X X X

c13.indd 362c13.indd 362 12/6/12 1:24 AM12/6/12 1:24 AM

http://codex.wordpress.org/Roles_and_Capabilities
http://codex.wordpress.org/Roles_and_Capabilities

Using WordPress Roles ❘ 363

Manage categories X X X

Manage links X X X

Manage all posts X X X

Manage all pages X X X

Manage others’ posts X X X

Read and manage

 private posts X X X

Read and manage

 private pages X X X

Upload fi les X X X X

Publish posts X X X X

Delete own published

posts X X X X

Edit own posts X X X X X

Delete own

 unpublished posts X X X X X

Read X X X X X X

Extending Roles

In most cases, the default roles will be enough. However, in certain circumstances there may be
the need to extend roles to include more permissions or fi ne-grained control over content-editing
capabilities.

The Role Scoper plugin by Kevin Behrens (http://wordpress.org/extend/plugins/role-scoper/)
is a very powerful tool to manage these access control situations. With this plugin, user access is
augmented beyond the default permissions covered previously, with specifi c access controls related to
content-specifi c settings.

c13.indd 363c13.indd 363 12/6/12 1:24 AM12/6/12 1:24 AM

http://wordpress.org/extend/plugins/role-scoper/

364 ❘ CHAPTER 13 STATISTICS, SCALABILITY, SECURITY, AND SPAM

That is, any level of user can have escalated permissions to edit and manage content based on
 specifi c categories, pages, or posts. This access permission can go both ways to either enable content
modifi cation, or the reverse, to remove the ability for a role to read content.

For example, you created a multi–product line site. Each product line had a product manager
responsible for its content. In this case, each product line became a WordPress category. With this
plugin, you were able to restrict product managers to be able to only post new content within their
respective categories.

Role Scoper is a very powerful plugin that allows you to build fi ne-grained controls. However, it
may be more than you need for your particular situation. Many other plugins are available that
allow you to supplement the built-in WordPress roles in other ways.

 SUMMARY

This chapter covered some of the challenges for when your WordPress site begins to get noticed
in the web, including managing scalability and performance through caching and load balancing.
Popularity also attracts spammers and other ne’er-do-wells, this chapter presented some methods on
how to handle spam as well as securing your WordPress installation.

Finally, role defi nition is key in controlling workfl ow, and is at the heart of using WordPress as a
full-fl edged content management system and in enterprise applications. You will tackle those topics
in the next two chapters.

c13.indd 364c13.indd 364 12/6/12 1:24 AM12/6/12 1:24 AM

WordPress as a Content
Management System

WHAT’S IN THIS CHAPTER?

 ➤ Examining content management system tasks that are easily

 performed with WordPress

 ➤ Confi guring WordPress to handle more complex content

 organization and display

 ➤ Integrating interaction vehicles such as forms, e-mail, and carts

Using WordPress as a content management system (CMS) seems to come up every month on
the web. Run that phrase through a search engine and you will see countless results on the
whys, why nots, and hows. It seems that WordPress is trapped with the stigma of being “only”
a blogging engine when, as you have discovered by now, it is so much more. Since the fi rst
edition of this book, this topic and discussion around it have grown. WordPress is no longer
pigeonholed in the “blog engine” space as it once was.

This chapter defi nes content management from the perspective of a WordPress system, looks
at the major functional areas associated with a CMS, shows you how to implement them via
WordPress, and fi nally points out some areas where WordPress, despite its fl exibility and
 simplicity, is potentially not the best tool for the task.

DEFINING CONTENT MANAGEMENT

“Content management” has become hard to precisely defi ne because it has been applied to a
wide array of software tools and systems. On one end of the spectrum you have wikis, with
explicit, multi-author editing and version control, but almost no page organization, naviga-
tion, or display mechanics. At the other extreme are commercial software packages aimed at

14

c14.indd 365c14.indd 365 12/6/12 1:25 AM12/6/12 1:25 AM

366 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

the enterprise that handles access control, audit performance, repository functions, and community
sharing of corporate documents. Clearly there’s a difference between the “transactional content man-
agement” realm of enterprise document control and self-directed publishing, but trying to pin the
content management label on just one or the other ignores the richness of the software tools in those
spaces. Since the rise of low-cost, easily used Internet tools, content management has more typically
been applied to the systems used to build a site for Internet commerce, featuring online catalogs and
 customer interaction.

Where does WordPress fi t on this spectrum? In the narrowest defi nition, blog engines are a form of
CMS, handling a minimal number of content types (pages and discussion) in a chronological display
order. Although WordPress started out as a blogging system, and some popular opinion still tries to
narrowly describe it as such, it has the power, fl exibility, and resources to perform most, if not all,
of the tasks required of a package more typically marketed as a CMS. The mechanics of managing a
site, administering users, and bucketing content for structure and distribution aren’t specifi c to blogs
or any fl avor of content; they require customization, design, and a multi-role delegation system. We,
the authors, hope this has been conveyed so far in this book, where we have liberally referred to the
“content management” functions of WordPress, and now we can tie the pieces together in a more
general CMS view.

Following are the CMS features discussed in this chapter:

 ➤ Workfl ow and delegation — Often the holy grail of the CMS world is enabling multiple
authors with minimal technical expertise to control the editing and publishing process.
WordPress makes it simple for nontechnical users to add content and manage its
distribution.

 ➤ Content organization — From mimicking a simple network portal to building complex page
hierarchies, content organization involves handling multiple, complex types of content and
choosing the appropriate display patterns for each.

 ➤ Interactivity — Mailing lists, forms, discussions, and commerce functions are typical CMS
functions that require a bit of WordPress extension.

 ➤ Other content management systems — As a pure website management system, WordPress
can be a powerful editing and content production platform, feeding other content manage-
ment systems such as Drupal. This chapter also looks at areas in which WordPress is not the
best choice.

At their core, blogging and content management may have come from different starting points and
established their own functional lexicon, but the extensibility, design customization, and diverse
developer community around WordPress has blurred the lines between what is “only blogging”
and the now in-vogue “enterprise content management.” WordPress in the enterprise is discussed in
Chapter 15, but as an introduction to the details of implementing full CMS functionality, here is a
list of reasons why WordPress should be considered a fi rst-tier content management system:

 ➤ Simplicity — From the user interface to content creation, WordPress can be simple or com-
plex to match user skill and deployment requirements.

c14.indd 366c14.indd 366 12/6/12 1:25 AM12/6/12 1:25 AM

Workfl ow and Delegation ❘ 367

 ➤ Flexibility — WordPress handles a multitude of site archetypes, from simple reverse-dated
blog entries to crowd-sourced, hyperlocal news sites (check out http://injersey.com) to
hierarchies of fi xed and dynamic content showcasing an artist, photographer, or other cre-
ative professional, or a vacation destination (check out http://baja.com).

 ➤ Extensibility — You can fi nd plugins and themes to create a huge variety of visual styles,
integrate numerous content types and sources, and simplify the process of going from simple
typed content to complex, displayed HTML.

The goal in covering WordPress as a CMS is to highlight approaches to solving typical content
management problems, building on the techniques and examples provided in previous chapters.
Of course, no one wants every conversation to start out with a defense of WordPress, either in these
pages or by you in a setting where you are choosing content management tools. Whatever your
 defi nition of content management, or your goals for creating a website that goes well beyond a list of
blog entries, the content management process starts with simplifying the workfl ow.

WORKFLOW AND DELEGATION

One of the primary appeals of a classic CMS is that it simplifi es content creation and management.
Closely tied to that effort is a separation of duties, such that those users and administrators with
editorial control over the content are given access, responsibility, and control over what is actually
published through the CMS.

User Roles and Delegation

User management in a CMS has all of the separation of powers and policy creation complexity of
politics, government, or standards bodies. You have to allocate roles based on the types and cat-
egorization of content you expect, as well as set boundaries on users’ abilities to publish and edit
previously published content. In a purely multi-author website environment, the distinction may
not appear that important, but if you’re using WordPress as the face of an e-commerce site or for a
company’s product catalog, multiple departments and approvers typically demand involvement.

Kevin Behrens’s Role Scoper plugin was covered in Chapter 13 as part of the security and user
management discussion. This plugin allows you to create new roles for your users and assign them
very fi ne-grained permissions. In a CMS environment, this would permit you to delegate content
generation to different departments and authorize them to make changes only in their respective
areas.

Assignment of authority goes up the hierarchy of users, not down from an editor to an individual
author. In a typical publishing environment, an editor will be able to dole out work to writers and
composition experts, creating a workfl ow for the fi nished product that is organized in a tree struc-
ture similar to an organizational chart. WordPress mobilizes the leaves in that tree structure: every
user that has contributor or author privileges can create content (and upload fi les, in the case of

c14.indd 367c14.indd 367 12/6/12 1:25 AM12/6/12 1:25 AM

http://injersey.com
http://baja.com

368 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

authors) and manage publishing of their own posts. Deciding how and where to divide responsibili-
ties is a key part of establishing a CMS framework with WordPress:

 ➤ Be diligent about administrator roles. Give them out like root or sudo passwords. At the
same time, don’t confuse editors with administrators. Editors may want to change the way a
page appears, or aggregate content differently. Administrators are going to fi x themes, core
fi les, and plugins, and each has to be clear about the bounds on their domains.

 ➤ Treat editors as such. They will be given permission to edit pages, modify the content or
status of any posts, and change metadata on the WordPress site. They should be using their
editorial roles to manage the work of the authors and contributors as well.

 ➤ If you really want every piece of content reviewed before it hits the public web, separate
contributors (who cannot publish) from authors (who can publish their own work but not
edit that of others). Establishing a contributor class of users ensures that your editors will be
busier, but also fully delegates the publishing decisions to those editors.

 ➤ Note that roles and delegation cover the creative process, not access control to content once
published. As soon as it’s accessible as a published post, it’s public until deleted (and even
then, it may be cached or replicated elsewhere through a feed mechanism). In contrast to
other content management systems, WordPress does not focus on a mechanism to control
access to published content; it’s not about intellectual property management or control in
the same way a corporate document repository might track access, references, and provide
auditing mechanisms.

A wrinkle on the multi-role and multi-user WordPress administration framework is WordPress
Multisite, discussed in Chapter 10. WordPress Multisite powers WordPress.com because it allows
multiple independent user trees to run independent but cohosted sites. This may be attractive if you
have independent product groups or multiple brands that each want their own WordPress installa-
tions but you are limited (or want to be restrictive) in terms of administrator people power.

Workfl ow

Having established users and their roles, the next step is to clearly establish a workfl ow for getting
content out of people’s heads and onto the web. After a simple editorial user structure, workfl ow
is probably the next most matched term when asking what users associate with mainstream CMS.
Two major components to workfl ow within WordPress exist: post revision history and
post control.

Revision history is visible within the Post portion of the Dashboard, where entering edit mode
on a post shows you the list of revisions. If you’re running a system with multiple authors and
editors, where the editors may fi ne-tune the fi rst writing output, ensure that the editorial staff is
using the revision feature to track content added, subtracted, or different between post revisions.
It’s effectively source code control for post content, managed within the MySQL database under
WordPress.

Although many people are big fans of the simple Dashboard and fi nd it compact yet powerful, some
site administrators may fi nd that the interface is too complicated given the technical background of
their editor or administrator delegate. Some people freeze up when they have too many options or
choices. You can use the WP-CMS Post Control plugin by Jonathan Allbut (http://wp-cms.com/

c14.indd 368c14.indd 368 12/6/12 1:25 AM12/6/12 1:25 AM

http://wp-cms.com/our-wordpress-plugins/wp-cms-post-control-plugin/
http://WordPress.com

Workfl ow and Delegation ❘ 369

There are many options here, but it is a simple management control. Using this plugin is the admin-
istrative control step that’s complementary to creating simpler (or more specifi c) post editing panels,
described later in this chapter.

The second part of content workfl ow is the process of taking posts from the draft state to published
state, with stops at “private,” “future,” and “pending” along the way if warranted. A post written
by a contributor will be held as “pending” until published by someone with that permission. Much
of the post workfl ow happens through the Posts tab on the Dashboard, where the status of each post
is clearly labeled, and there are menu items for publishing or making other post status changes such
as marking a post as private or setting a future publication time.

If you’re running a multi-writer WordPress site, remember that all of the content is stored in the
same MySQL database, making it easy for other users to see the current state of the content.
WordPress provides the wp_transition_post_status() function for plugins that want to catch
individual post status changes, either to update a work-in-progress page or to otherwise signal to
other users that a workfl ow change has propagated.

our-wordpress-plugins/wp-cms-post-control-plugin/) to turn off unneeded features. This
plugin installs a new control panel that allows you to confi gure the Write Panel to show only the
fi elds you want them to see, as shown in Figure 14-1.

FIGURE 14-1: Using WP-CMS Post Control to set the

Dashboard options

c14.indd 369c14.indd 369 12/6/12 1:25 AM12/6/12 1:25 AM

http://wp-cms.com/our-wordpress-plugins/wp-cms-post-control-plugin/

370 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

A particularly interesting plugin to watch is the Edit Flow plugin (http://wordpress.org/extend/
plugins/edit-flow/). This plugin was designed to model a newspaper publishing workfl ow in
WordPress. It includes several new post statuses, starting from pitching a story up to the traditional
published post. It also includes special story budgeting calendars to make sure you have content
spread out appropriately and assigned to writers and photographers for proper content completion.
Additionally, this plugin includes behind-the-scenes notes between the editor of the site and the
author to help with the publishing workfl ow with remote workers. It is defi nitely a niche plugin,
but if your needs align, check it out.

CONTENT ORGANIZATION

There is an ongoing discussion, bordering on a fl ame war, about posts in a WordPress site that is
being used as a traditional, static content website. Posts are an indelible part of WordPress and
absolutely have a place and use in any website, but the common argument is that posts are natu-
rally chronological and that only time-based content fi ts this paradigm. Posts can represent any
small content block that can be used multiple ways, and part of using WordPress as a CMS involves
changing your strategic thinking about what types of content are used to what effect on the site.

Here are three simple examples of using posts for a commerce site:

 1. Create a post for each product that you sell. Comments on the post allow users to offer
feedback and recommendations.

 2. Create a category or tag for each product on the site, and then organize posts about the
product. The fi rst post in each category should be the product information, and possibly
a link to a shopping cart via which to purchase the product — something covered shortly.
Now you can use the posts structure to provide deeper information about each product:
Why are you offering it? How is it created, defi ned, or sourced? What other reviews,
 feedback, or public commentary exist?

 3. When creating a help section for a product, each help topic could be a post. Each help topic
would be one small bite-sized piece of content that addresses a specifi c task or feature, using
the tag and category mechanisms to sort and provide navigational guidance to users looking
for self-directed help. Comments on the posts allow for users to describe the relative helpful-
ness of each post. Similarly, although not e-commerce, the jQuery team is using this method
to document its API at http://api.jquery.com, creating a help resource and community
resource via comments, all in one.

In every one of these simple examples, you want to change the default behavior of WordPress
away from showing the most recent posts, and instead create a mix of static and dynamic homep-
age content reminiscent of a static website. You can see a variety of WordPress CMS application
 examples at http://wordpress.org/showcase/tag/cms.

Theme and Widget Support

Theme support for content management is key. Your goal may not be to make WordPress look
decidedly non-blog-like but, rather, to fi nd a theme that gives you the fl exibility to display the

c14.indd 370c14.indd 370 12/6/12 1:25 AM12/6/12 1:25 AM

http://wordpress.org/extend/plugins/edit-flow/
http://wordpress.org/extend/plugins/edit-flow/
http://api.jquery.com
http://wordpress.org/showcase/tag/cms

Content Organization ❘ 371

You do have to exercise some caution when using this plugin. Usually, your sidebar and other
 widget-ready areas have fi xed widths. With this plugin, your content creator can upload anything
into the widget and potentially break the layout of the site. However, this can be remedied with
some proper training.

types of content in the visual style that fi ts, whether it’s a product sales site or an online newslet-
ter. This is a great use case for the Thematic (http://wordpress.org/extend/themes/thematic)
framework with its 13 widget areas and powerful child theme extensibility. As an extreme case,
the P2 theme (http://p2theme.com) developed by Automattic puts a posting panel, real-time
updates, and inline editing right on the homepage, combining the best of Twitter, a blog, a discus-
sion forum, and a news site. WordPress can be molded through themes to look completely different
from any other WordPress site.

If you’re going to be using a theme with widget areas and want to expand the content types avail-
able in those sidebar areas, you’ll want to leverage the TinyMCE JavaScript-based editor to turn
HTML text areas into something more theme-appropriate. The Rich Text Widgets plugin addresses
the challenge that default text widgets support only plain old text. When you enable the Rich Text
Widget plugin by Julien Appert (http://wordpress.org/extend/plugins/rich-text-widget/),
as shown in Figure 14-2, you have a new widget available in your widget control panel. This widget
has the built-in TinyMCE editor, so your content creators can put more than text in the sidebar.

FIGURE 14-2: Editing a rich text widget

c14.indd 371c14.indd 371 12/6/12 1:25 AM12/6/12 1:25 AM

http://wordpress.org/extend/themes/thematic
http://p2theme.com
http://wordpress.org/extend/plugins/rich-text-widget/

372 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

Homepages

Remember high-school writing courses in which every story had to have a narrative hook? The hook
was the point in the story where you established what made your story unique or interesting, and
encouraged your reader to keep going. A good narrative hook on a WordPress site will engage the
reader and kick off the remainder of your story line, whether it’s product-related content, or a mix
of static and time-sensitive posts.

The common approach is to set a static front page. As discussed in Chapter 9, you can do this in
several different ways. The easiest is to use the WordPress Reading Settings Dashboard to set a static
page for your front, or homepage. In addition, this page could use a page template to modify and
distinguish the layout from the rest of your site. You’ll need to create a page (not a post) specifi cally
for this purpose, and then use the Dashboard to set it as the front page.

The bundled TinyMCE editor is workable but doesn’t support some frequently used features such as
adding tables. The TinyMCE Advanced plugin by Andrew Ozz (http://wordpress.org/extend/
plugins/tinymce-advanced/) steps in and tries to address these shortcomings; however, be
 forewarned that the more elaborate your content, the more opportunity you create to break your site
(again) with ill-formatted or rendered tables. Figure 14-3 shows a couple of features turned on, but
there are many more.

FIGURE 14-3: Using TinyMCE Advanced to edit a post

c14.indd 372c14.indd 372 12/6/12 1:25 AM12/6/12 1:25 AM

http://wordpress.org/extend/plugins/tinymce-advanced/
http://wordpress.org/extend/plugins/tinymce-advanced/

Content Organization ❘ 373

The other option is to use a special WordPress template fi le to serve as your front page, replac-
ing the default listing of posts. WordPress looks for a template fi le named front-page.php in
your theme, as discussed in Chapter 9. Using a template fi le will afford you more fl exibility in the
 layout and functionality of your index page because you can edit the PHP code directly, choosing,
for example, to list sticky posts or featured products fi rst, and then related content or more recent
chronological posts. Using a mix of additional page data fi elds and the custom loop query mecha-
nisms described in Chapter 5, you can hand-tune the selection of content for your homepage as
fi nely as you want.

Featured Content Pages

A good tool for your narrative hook on your static index page is a featured item. This is very com-
mon among the magazine-style themes in particular as well as many other websites. Often, in the
top third of the content area, you will see a large image area with a headline featuring content from
elsewhere in the site. This position is sometimes called the “hero spot” and is featured prominently
on popular websites. It is a frequently deployed device because it works.

Generally when you deploy a featured item on the index page, you like to have several different
images and use jQuery (or another JavaScript library) to cycle through them. That way, you are
not relying on one hero item to save the day, but putting forth a couple of different ideas, and with
luck, one will catch the visitor’s eye. The goal here is to feature items managed as posts, custom
post types, or media by WordPress so that the editorial staff can control them rather than the site
administrator.

The fi rst thing to do is set up a system for the featured items. You can use a category named
“Features” and use just those posts for the slideshow. But that means that in other parts of the site,
if there is a news section that shows all posts, you will want to exclude this category from those
Loops, which can be a pain. This is how you used to manage this type of feature on a WordPress
site, and some themes continue to do so.

However, as covered in Chapters 7 and 9, you can use custom post types to achieve this
 functionality without the extra loop overhead. Again, this is only one way to implement this
 content management element; there are many others. In this example, you are going to edit the
theme template fi les directly, but this functionality could be built into a plugin also.

The plan is to showcase three random features from the “slides” custom post type for display. First,
register a new custom post type, as discussed in Chapter 7. This code goes in your functions.php
fi le. For this example, it might be something like this:

/*
 * SLIDES FOR FEATURE
 * Register post type for feature
 */
add_action('init', 'wppro_create_post_types');
function wppro_create_post_types() {
 register_post_type('slides',

c14.indd 373c14.indd 373 12/6/12 1:25 AM12/6/12 1:25 AM

374 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

 array(
 'labels' => array(
 'name' => _x('Slides', 'post type general name'),
 'singular_name' => _x('Slide', 'post type singular name'),
 'add_new' => _x('Add New', 'Slide'),
 'add_new_item' => __('Add New Slide'),
 'edit_item' => __('Edit Slide'),
 'new_item' => __('New Slide'),
 'view_item' => __('View Slide'),
 'search_items' => __('Search Slides'),
 'not_found' => __('No Slides found'),
 'not_found_in_trash' => __('No Slides found in Trash'),
 'parent_item_colon' => ''
),
 'public' => true,
 'exclude_from_search' => true,
 'supports' => array('title','thumbnail','editor'),
)
);
}

For the display on your site, you are either going to edit your front-page.php template fi le or make
a new page template fi le for your index page. These code changes will go into that fi le.

Next, you have to get the slides from the database. You can get these posts with a simple WordPress
get_posts() function:

global $post;
 $args = array(
 'post_type' =>'slides',
 'numberposts' => 3
 'orderby' => 'ASC'
);
$slider_posts = get_posts($args);

You can tell from the parameters what this function will return: three custom post types of the type
slides, in ascending order. You can change numberposts to be –1 to get all of the posts. Then, in the
content area of the template fi le, you mix a little HTML for the jQuery to hook into and then loop
over the result object:

<div id="slideshow_container">
 <div id="slideshow">
 <?php if($slider_posts) {
 foreach($slider_posts as $post) : setup_postdata($post);
 // get image
 $thumbnail = wp_get_attachment_image_src(get_post_thumbnail_id(),
 'home-slide');
 if ($thumbnail[1] == "600" && $thumbnail[2] == "160") {
 //also check thumbnail dimensions in css ?>
 <div id="feature-<?php echo $post->ID; ?>" class="slide">
 <a href="<?php the_permalink(); ?>" title="<?php the_title(); ?>">

c14.indd 374c14.indd 374 12/6/12 1:25 AM12/6/12 1:25 AM

Content Organization ❘ 375

 <img src="<?php echo $thumbnail[0]; ?>" title="<?php the_title();
 ?>" />

 </div>
 <?php } ?>
 <?php endforeach; ?>
 <?php wp_reset_postdata();
 } ?>
 </div>
</div>

What you are doing here is creating some wrapping divs to contain the slideshow, looping over
each custom post type in the query result, and pulling out the featured image. When you put this to
use, the featured image is specifi cally sized, which you are checking so that the slide does not break
your theme layout. Finally, each image is wrapped in an anchor tag linking to the post content you
authored in the Admin Dashboard.

This can be extremely convenient because you now have featured slides advertising on your index
page that link to individual landing pages, which makes it handy for tracking success rates through
your traffi c analysis. Furthermore, you are not cluttering up your traditional post and page content
with ephemeral advertising posts.

If you view your site now, you will see three stacked images on top of each other, so the next
step is to take these posts and use a little JavaScript magic to turn them into a slideshow or
carousel. Many people are big fans of the jQuery Cycle plugin by Mike Alsup (http://malsup
.com/jquery/cycle/). Note that this is a plugin for jQuery, and not WordPress. This plugin is
really easy to use and has several neat transition options. Using this plugin, you can convert the
HTML into an autoscrolling slideshow. This JavaScript code goes into the bottom of your page
template fi le or where you would normally place your JavaScript. The jQuery could be something
like this:

$('#slideshow').cycle({
 fx: 'scrollHorz',
 speed: 500, //time the transition lasts
 timeout: 10000, //time between transitions
 pause: 1, //stop the show on mouseover
 random: 0, //random order (not using a random order)
 delay: -1000, //delay before show starts first transition
 next: '#next',
 prev: '#previous',
 pager: "#slidenav",
 pagerEvent:'mouseover',
 // name of event which drives the pager navigation
 autostop: true,
 // true to end slideshow after X transitions
 //(where X == slide count, use this to help with out of control javascript on
 // some browsers)
 autostopCount: 100,
 // number of transitions (optionally used with autostop to define X)
 // callback fn that creates a thumbnail to use as pager anchor

c14.indd 375c14.indd 375 12/6/12 1:25 AM12/6/12 1:25 AM

http://malsup.com/jquery/cycle/
http://malsup.com/jquery/cycle/

376 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

 pagerAnchorBuilder: function(idx, slide) {
 slide.id = "slide"+idx;
 var desc = jQuery('#'+slide.id+' img:first').attr("title");
 return ''+(1+idx)+'';
 }
});

Experiment with the different effects and timing using the other parameters you can set to create
unique results. This same method could be used to showcase some testimonials. Either keep it in
a slideshow pattern, as outlined previously, or pull a random post from the testimonial category.
Rather than using images as your content, you can have the actual formatted post data. You are
only limited by your imagination.

Content Hierarchy

In addition to the featured item concept to draw users’ attention, most content management systems
will allow you to create a content hierarchy to improve navigation once you’ve hooked the user. A
typical hierarchy contains content of different types in a tree-like structure to impose navigational
patterns, and that allows you to mix static content features with more dynamic content.

One obvious path to a content hierarchy is to use categories and tags to sort posts into related
groups. This is useful when you are using posts as the primary content type and organize equivalent
classes of posts by category or unique tag information. In addition, you saw in the previous section
of this chapter how posts can be used for featured image content on an index page carousel.

The custom taxonomy features discussed in Chapter 7 provide another way to organize and search
posts, giving you even more fl exibility when customizing a theme’s Loop. This section digs into
these custom pages and post hierarchies more, providing examples of plugins that let you craft the
content management aspects of WordPress to suit your desired site look and feel.

You can start with a complex navigation challenge: you have a hybrid site that has sections where
pages are the obvious content type, but you also have some sections where post categories make
more sense. You do not want to manage a hard-coded navigation tree, and implementing menus isn’t
perfect because the post content is (intentionally) regularly changing.

One solution is the Page Links To plugin by Mark Jaquith (http://txfx.net/wordpress-
plugins/page-links-to/). This plugin creates a new fi eld on the page Write Panel. Using this fi eld,
you can create a page that functions as a redirect to another web page. This enables you to use the
menu system as your site’s global navigation, but still empowers you to create menu items that can
redirect to offsite links. Or, more often, you can now create a menu item as a page but have it redi-
rect to a post Loop page.

For example, pretend that under your About Us menu, you have the traditional History (of your
company) and Contact Us pages, but you also have a job posting page. But your company uses a
third-party service for job postings, which creates a problem in your navigation. With this plugin,
you can create a new page called Careers, but have the page link to the third-party job-posting site
instead. You can see how this would be set up in Figure 14-4.

c14.indd 376c14.indd 376 12/6/12 1:25 AM12/6/12 1:25 AM

http://txfx.net/wordpress-plugins/page-links-to/
http://txfx.net/wordpress-plugins/page-links-to/

Content Organization ❘ 377

The next challenge with a large site is managing the pages. After a
while, your site grows to have multiple pages, under multiple parent
pages. This structure is necessary to make your site coherent, as
discussed in Chapter 9. Themes have several ways to handle global
navigation, and determining which method your theme uses is
important. Most themes are moving toward using the WordPress
menu system.

The menu system is nice and fl exible, but it is disconnected from
your actual content. With the menu system, you can automatically
add pages to the navigation, but only at the top level. But when you
remove a content page in the Dashboard, it does not affect the menu,
leaving you with orphaned navigation links. This disconnect can be
very baffl ing to inexperienced WordPress administrators, and can be
frustrating for experienced administrators that the two systems are
not coupled.

A second, older method uses the built-in Parent pages functional-
ity. Page management is serviceable but can get confusing quickly when you have many pages. And
when you need to move pages around, using this method can get quite tedious, as you can see in
Figure 14-5.

One way to get the simple menu management built into WordPress with the connected
 content-to-navigation-item association is with the Page re-Mash plugin, originally by Joel Starnes

FIGURE 14-4: Creating a page that links to third party with the page links to plug in

FIGURE 14-5: The Parent

pages drop-down selection on

a site with just a few pages

c14.indd 377c14.indd 377 12/6/12 1:25 AM12/6/12 1:25 AM

378 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

Assuming you are following the “posts are generic content” lead and are using posts for various
types of content in your site, the Yet Another Related Post plugin by Michael Yoshitaka Erlewine
(http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/) is a nice
add-on. This plugin provides a list of additional content that is possibly related to the current entry.
Using this type of functionality will encourage visitors to explore other areas of your site that are of
similar interest. Like the jQuery API documentation center mentioned previously, this plugin would
provide additional help topics related to the current issue. In short, using this plugin creates cross-
references in your website among related content.

and updated by Matt McInvale. To get Page re-Mash to work on a current version of WordPress,
download the original PageMash plugin from http://wordpress.org/extend/plugins/
pagemash/ and then replace the pagemash.php fi le with the updated one from http://binarym
.com/2010/pagemash-trash-auto-draft-and-wordpress-3-0/.

Page re-Mash, in all its AJAXy goodness, allows you to move pages around in a drag-and-drop
natural fashion. As you can see in Figure 14-6, pages can be nested and organized in a very intuitive
interface. Page re-Mash requires your theme to use the wp_list_pages() function for your site
navigation and not the built-in WordPress Menu System. The plugin will let you hide pages from the
wp_list_pages() function, offering even more control over the whole navigation structure of
your site.

FIGURE 14-6: Managing page order and nesting with the PageMash plugin

c14.indd 378c14.indd 378 12/6/12 1:25 AM12/6/12 1:25 AM

http://wordpress.org/extend/plugins/pagemash/
http://wordpress.org/extend/plugins/pagemash/
http://binarym.com/2010/pagemash-trash-auto-draft-and-wordpress-3-0/
http://binarym.com/2010/pagemash-trash-auto-draft-and-wordpress-3-0/
http://wordpress.org/extend/plugins/yet-another-related-posts-plugin/

Interactivity Features ❘ 379

The Pods Framework plugin (http://wordpress.org/extend/plugins/pods/) takes structuring
data even further. Pods allows you to create new content types above and beyond posts, pages, and
custom fi elds. You can then normalize these new types with relationships among the data. You can
use these new content types and relationships in your Pods pages that support special Pods syntax
and PHP code. Pods is a much more complex system but it also is much more powerful.

INTERACTIVITY FEATURES

The most basic interactivity feature is Search, discussed in Chapter 12. The other primary user
interaction features associated with a CMS are forums, forms, and basic e-commerce features.

Forums

Comments on posts are the simplest content discussion type. At times, you’re going to want to move
from content that you create in an attempt to stimulate conversation into user-led and threaded
 conversation. A forum is an open discussion, most commonly called a bulletin board in the pre-
broadband days of the Internet. The easiest way to add forums to WordPress is through bbPress
(http://bbpress.org), a WordPress-related project also delivered by Automattic. bbPress will
share user data with WordPress so registered users can participate in forum discussions. It’s possible
to load them both and have your forums simply appear as a section of your website.

If you want a simple forum feature as a content type, the plugin route is likely to produce an
 acceptable result. On the other hand, if you want to integrate multiple content management
 repositories into a single user experience, take a page (literally) from WordPress.org: bbPress
 powers the WordPress.org user-generated support area.

Forms

The next challenge for a website is creating and managing forms, such as contact forms and other
similar web form–to e-mail functionality. Countless plugins are available for contact forms, but for
a full-featured site, you will eventually have to move beyond this. For the longest time, the cForms
11 plugin by Oliver Seidel (http://www.deliciousdays.com/cforms-plugin) has been the regular
stand-in. CForms works very well and is extremely powerful. You can customize it to all ends of
the earth, but the user interface is very daunting at fi rst. You cannot really hand off CForms to your
content administrator to make new forms as needed.

An alternative to CForms is Gravity Forms by RocketGenius (http://www.gravityforms.com/).
This is one of the few plugins mentioned in this book that costs money to use. But to be honest here,
Gravity Forms is a very enticing prospect. Ask any WordPress developer what her favorite plugin is,
and if she has used Gravity Forms, that’s usually the answer. Gravity Forms lets you create any type
of form you need with a simple, easy-to-use AJAXy interface. It is so easy to use that many content
administrators are shown how to use it. Not to gush too much, but the clean, intuitive interface is
truly one of the best among plugins.

In addition to the user interface side, the HTML rendering is top notch. It looks fantastic without
any additional styling required. However, should you desire to change the look and feel, the HTML

c14.indd 379c14.indd 379 12/6/12 1:25 AM12/6/12 1:25 AM

http://www.deliciousdays.com/cforms-plugin
http://www.gravityforms.com/
http://wordpress.org/extend/plugins/pods/
http://bbpress.org
http://WordPress.org
http://WordPress.org

380 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

is fi lled with CSS class and ID hooks for you to use. In addition, this plugin is so popular that many
themes include styling for it. A fi nal, powerful feature of Gravity Forms is that, in addition to the
traditional “e-mail the form contents to a specifi ed address” functionality, Gravity Forms also adds
a Dashboard module that tracks the forms submitted. Although CForms has similar functionality,
the usability of Gravity Forms really justifi es the cost.

E-Commerce

If you are building a site with featured products and pages, product tags, and categories, ideally
you’d like to sell something. Shopping cart and payment systems integration fi ll the last category of
user interaction. If you search the plugin directory on WordPress.org, you will see at least a dozen
different shopping cart and checkout plugins available. Rather than itemize them all, here’s a quick
checklist of things to look for:

 ➤ How hard is it to confi gure the shopping cart? Are you going to be burdening your admin-
istrators with minor details such as updated discounts, or can content managers handle that
task?

 ➤ What kinds of statistics can you get from the cart? Learning how and why users abandon
items will help you improve the site, whether through more product information or an easier
checkout process.

 ➤ What payment systems are supported? If you’re not looking for anything more complicated
than the ability to accept PayPal payments with a specifi c product or item number fi lled in,
you can use PayPal button templates and hand-edit them into your pages or sidebars.

The WP e-Commerce plugin (http://getshopped.org) combines nearly all of the extension mech-
anisms covered: it uses custom post types for product pages, organizes them in custom taxonomies,
and adds plugin-specifi c database tables to maintain product attributes. It integrates with a variety
of payment mechanisms and clearly demonstrates that you can give WordPress a hand-crafted look
and feel.

OTHER CONTENT MANAGEMENT SYSTEMS

You have seen how WordPress is so much more than a blogging platform. It can be used for a
wide range of different types of websites, but aside from what a plugin can offer — which can be
 substantial — the functionality of the WordPress Core is what it is. Sometimes you want to comple-
ment your website with additional functionality found in other traditional web-based applications,
such as forums like bbPress, social network features like BuddyPress, e-commerce applications, or
other CMS solutions.

Given the range of content management systems available, and the fact that most enterprises already
have one, if not several, content repositories up and running, it’s often useful to integrate WordPress
with another CMS. This section takes a brief look at when you should use WordPress as an exter-
nal content consumer or producer and when you should not use WordPress as the core of a content
management system solution.

c14.indd 380c14.indd 380 12/6/12 1:25 AM12/6/12 1:25 AM

http://getshopped.org
http://WordPress.org

Other Content Management Systems ❘ 381

WordPress Integration

Integrating an application like WordPress with another content-oriented application requires that
you align user management, content packaging and, potentially, look-and-feel issues. It’s not some-
thing easily accomplished with a plugin or theme extension, and typically requires custom bridge
code. You will fi nd building blocks in the plugin directory; this section presents a rough outline of
the problems to be solved.

How does the external system provide content? Are you getting an RSS feed, in which case you can
use the RSS aggregator discussed in Chapter 11 as a starting point, or do you get raw JSON that
requires editing and parsing before being turned into a post?

If you have a remote resource URL, can you embed it using an oEmbed (http://oembed.com)
 provider plugin? oEmbed takes a URL and returns a variety of content types that can be integrated
into WordPress themes, allowing them to be displayed without WordPress having to parse the con-
tent type. Chapter 11 also touched on some of the oEmbed features of WordPress.

Do you need to manage user credentials between the sites? Do you have to store user login informa-
tion for the external site (in the WordPress MySQL database, using a table created by your plugin),
and if so, how do you handle error conditions such as password changes or user deletion in the
remote system?

It’s possible to treat WordPress as a blog-only engine, producing blog posts for consumption by a
CMS like Drupal. In this case, WordPress becomes a component of Drupal, managing its content as
the source of the blog posts type but ceding presentation control to the Drupal confi guration.

Where Not to Use WordPress

Not every content management problem is a nail waiting to be pounded home by the WordPress
hammer. Sometimes you’ll need to pick a different tool, or set of tools, for the job:

 ➤ Handling rich media — Streaming video, audio, and images with copious quantities of
metadata can be displayed and included in WordPress posts, but if you want to be able to
tag and index video fi les or search images based on their EXIF (Exchangeable Image File
Format) tags, you probably want to use a CMS designed for rich media management.

 ➤ Backend for Rich Internet Applications — The next generation of mobile clients is
 emerging. They usually expect to talk to a backend data repository or service, rather than a
full-featured website. WordPress eventually emits HTML, not JSON or other data packag-
ing formats most likely consumed by APIs. WordPress can do it, but is it the right tool?

 ➤ Simple network storefront — If you’re just building a store, use a storefront builder with
shopping cart, payment systems, and product catalog. You’ll miss the integration of product
discussion, feedback, recommendations, and the ability to describe how and why you’re
carrying (or have built) a particular product, all of which are possible using the approaches
described in this chapter, but sometimes you just need users to be able to click and buy.

 ➤ Event and calendar focus — Several types of sites manage calendars, event registra-
tions, event materials, and notifi cations or reminders about upcoming calendared items.

c14.indd 381c14.indd 381 12/6/12 1:25 AM12/6/12 1:25 AM

http://oembed.com

382 ❘ CHAPTER 14 WORDPRESS AS A CONTENT MANAGEMENT SYSTEM

WordPress does not (yet) have a built-in highly functional calendar and event management
plugins, making this an area where using Drupal or BuddyPress may be simpler out of
the box. BuddyPress in particular has a fair number of features for calendar-driven activi-
ties and content, but gives you the context of a community management tool, similar to a
 private social network, rather than a pure content management system.

 ➤ Force-fi tting a solution — If you have to make modifi cations or changes to the WordPress
Core, either you are doing something wrong or, more likely, WordPress is not the right
 solution. When hacking the core WordPress code, you break your upgrade path, such that
you overwrite any changes you made to the core package fi les that enabled your specifi c
functionality to work as soon as a new version of WordPress was released. As stated in
Chapter 4, don’t hack the core.

 ➤ Plugin overload — Plugins rock, and a large portion of this book has been devoted to
 identifying appropriate plugins for specifi c functions or outlining how to create your own
for those uses. But you can go overboard. If you are using too many plugins, you may hurt
the performance of your site and probably make it more fragile as a result of unknown
dependencies between the plugins. Each plugin also increases the resource requirements of
your site, specifi cally, memory and processing power.

SUMMARY

WordPress is a powerful content management system with many of the features found in commer-
cial systems that pre-date the blogging craze of the early 2000s. In equal parts tribute to its open
source roots, strong developer community, and simple extensible design, WordPress has established
itself as a tool that goes far beyond a simple blog engine. Chapter 15 looks at enterprise-scale
WordPress deployment.

c14.indd 382c14.indd 382 12/6/12 1:25 AM12/6/12 1:25 AM

WordPress in the Enterprise

WHAT’S IN THIS CHAPTER?

 ➤ Determining if and how WordPress could benefi t your company

 ➤ Understanding ways to tune your application stack to help

WordPress scale to meet traffi c demands

 ➤ Evaluating diff erent corporate authentication integration options

What exactly is enterprise software? Is it more than a marketing term, one that is used to
nebulously declare that my software is better than yours? Just like using WordPress for a
CMS, we (the authors) think this topic needs to be put to rest. Obviously, developers are
using WordPress as a CMS; you just read a whole chapter about it. Likewise, companies, or
enterprises, are using WordPress every day. Just take a look at http://en.wordpress.com/
notable-users/ and you see many big names, ranging from news sites, to technology sites, to
Fortune 500 companies using WordPress as part of their enterprise solution.

This chapter looks at the motivations for using WordPress in your small or large enterprise.
You will also look at the reasons WordPress may not be a good fi t. If you decide to take the
plunge and try WordPress for your enterprise, you will cover some methods for making it
scalable and techniques for integrating authentication and content into a corporate environ-
ment. These techniques will also work on a stand-alone site, so even if you are not using
WordPress in a corporate environment, many of these approaches will still apply to your site.

IS WORDPRESS RIGHT FOR YOUR ENTERPRISE?

Again, what exactly is enterprise software? In the most general terms, enterprise software
solves a company-wide requirement or need rather than focusing on the necessities of a certain
team or department. Often, enterprise software will integrate with other software pieces or
business processes, such as a corporate authentication system or a standard for web servers.

15

c15.indd 383c15.indd 383 12/6/12 1:26 AM12/6/12 1:26 AM

http://en.wordpress.com/notable-users/
http://en.wordpress.com/notable-users/

384 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

But frankly, what makes a software package enterprise-worthy depends on your actual enterprise
requirements. Clearly, WordPress works for certain businesses, and will most likely work for yours.
Following are some reasons why.

Many of these reasons are plain old reasons to use WordPress, or reasons to use WordPress as a
CMS, which are essentially one and the same. Look at all the functionality you receive out of the
box when you use WordPress. WordPress, by its very nature, is easy to set up and use, and is search
engine–optimized, security-aware, and well maintained, and countless other features have made it
as popular as it is today.

For our enterprise, this base functionality is what allows us to create fully functional, profes-
sional websites quickly, whether they are for one of our marketing initiatives, a new brand, or for a
department or a client. This standardization, coupled with theme development consistency covered
previously, ensures that our website infrastructure is predictable and manageable, thus making the
development process more effi cient and cost effective, all of which are enterprise-worthy goals.

WordPress works in the enterprise environment for other reasons, as covered in the previous chapter
about using WordPress as a content management system. The primary benefi t is the capability to
delegate content creation to department owners. There is no way the development team can know
the happenings and updates of every department company wide. Furthermore, even if these other
departments provided content and relied on the web developers to perform the updates to the sites,
the developers could be endlessly occupied with maintenance work. By using WordPress and some
select plugins you are able to hand the updates back to the respective departments to manage their
own content creation, control, editing, and maintenance cycles.

WordPress is extensible. This has been covered throughout this entire book. You can extend WordPress
in countless different ways by using plugins, and if the plugin that you need does not exist, you can
use the plugin API to make your own. This allows you to integrate WordPress into your existing IT
infrastructure.

The simplest form of integration is using RSS (really simple syndication), which does not require a
plugin. We use RSS throughout our company as a way to organize content coming from different
locations and reuse that content in new places. For example, press releases are syndicated from one
central site, and by using tags and post categories, these content pieces are broadcast to the indi-
vidual department sites as needed. This permits our content creators to post once and publish across
a wide array of websites.

Furthermore, using RSS you are able to publish alerts and other timely news pieces from a central
site to various locations around the country for use in their intranets and portals. This provides you
with a one-stop location to publish from, and presents the consumers with a one-stop location from
which to review the information.

Other integration pieces could include authorization with an existing identity provider, which is cov-
ered later in this chapter, calendaring applications, project management, or system status indicators.
Because of the open API, you could integrate anything that you put your time and talents to.

Another reason is cost — you cannot beat the price of WordPress. For the actual outlay of money
your company would have to pay to try WordPress in your enterprise, you can afford to give it a try
and see if it solves some business needs (assuming, of course that you follow good security practices).

c15.indd 384c15.indd 384 12/6/12 1:26 AM12/6/12 1:26 AM

When WordPress Isn’t Right for You ❘ 385

WordPress is open source software. That means that when you download it, you have everything.
There are no magic compiled libraries of which you cannot see the direct functionality. Being
open source and completely transparent prevents vendor lock in. Should you decide in the future
that WordPress is not the right fi t, all of your content is extractable. Sure, Automattic is the brains
behind WordPress, but with access to all the source code you can always maintain the code should
Automattic go away. Or you could fork the codebase and make your own changes if you do not
like the direction Automattic is taking, although other risks are involved here, such as disenfran-
chising the WordPress community by not respecting the spirit of the licensing, or in other words,
changes and improvements should be contributed to the greater community. Generally, a better
approach would be to get involved with the development and direction of WordPress, which is
covered in Chapter 16.

WHEN WORDPRESS ISN’T RIGHT FOR YOU

Depending on your circumstances, WordPress can be a good fi t for your company’s needs. But also
consider the fl ip side. There are times when it does not match up with your company’s goals, virtues,
or culture, or the functionality does not match up with your needs or requirements. Here are some
examples of when WordPress may not be the right fi t.

WordPress may not have the exact functionality your company requires. It is not a panacea and
cannot be all things to all people. For example, editorial workfl ows and default permissions are two
places that may not line up directly. Plugins exist or are being developed that address these defi cien-
cies, such as CoPress.org’s Edit Flow plugin (http://copress.org) and the Role Scoper plugin
covered previously. Should you fi nd a requirement that a plugin does not address, perhaps you have
actually stumbled across an opportunity to develop one yourself.

This next challenge is not WordPress-specifi c, but a common enterprise concern about free/open
source software (FOSS) is that there is no one entity to hold accountable. Sadly, this is a reality for
some companies. They want someone to hold accountable should something go wrong. In the worst
circumstances, this could be you. At the same time, misconceptions about licensing, copyright,
copyleft, and layering of software still persist in the business and technology communities. Some
of these were touched on in Chapter 1. Likewise, there is no “go to” for support situations. But
if you look around, you can fi nd copious amounts of information on the Internet, both good and
bad, and there are tons of consultants (possibly including you, after reading this book). Automattic
also offers paid support through its WordPress VIP Program (http://vip.wordpress.com/our-
services/#self-hosted) for companies that truly want to pay for accountability.

Because it is open source software, anyone and everyone can develop for it. When picking plugins,
you are at the mercy of the developer. Short of doing it yourself, you do not know the quality of the
plugin or the developer’s credentials and security awareness. So prepare to get your hands dirty and
actually evaluate the code you are going to use on your site. Be sure you know what you are getting
into with a plugin.

The last challenge is the development progression, which begins with local development, then moves
to a staging or quality assurance server, and then fi nally deploys to a live production server. In most
cases, this progression is not a big deal. Themes and plugins developed locally can easily be deployed
through these stages. The challenge really comes into play when you are making drastic content

c15.indd 385c15.indd 385 12/6/12 1:26 AM12/6/12 1:26 AM

http://copress.org
http://vip.wordpress.com/our-services/#self-hosted
http://vip.wordpress.com/our-services/#self-hosted
http://CoPress.org

386 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

changes on a production site, such as massive copy revisions to a set of product line pages. Aside
from multiple imports and exports of the data or database syncing, a viable, low-maintenance solu-
tion for this challenge is still needed. As touched on in Chapter 3, however, there are smart people
working on this, such as Crowd Favorite’s RAMP.

SCALABILITY

At some point, the question arises — can WordPress scale? And the answer is, of course it can. Just
look at WordPress.com statistics (http://en.wordpress.com/stats/traffic/). You can clearly
see that it is capable. But the actual task of scaling a WordPress installation involves many layers,
including the WordPress code, plugins and themes, the PHP version and settings, the web server
software and the underlying operating system, and fi nally, the actual server hardware. The key to
scaling a WordPress installation is to secure and tune each of these layers.

Performance Tuning

Securing and tuning your WordPress installation was covered back in Chapter 13. Be sure to review
that content. You’re going to touch on more enterprise-specifi c issues here, with the assumption that
in a corporate technology deployment, you’ll have access to the web, database, and fi le servers
that comprise the bulk of your WordPress installation. We are big believers in DevOps, and you, as
the developer, should have knowledge and access to all these layers to understand how all the mov-
ing parts work together. Sadly, in some organizations these levels remain in department silos.

Tuning your theme should be part of any theme development process. That process includes check-
ing the fi le sizes of all images, making sure the JavaScript and CSS are as small as possible, perhaps
even minifi ed, and reducing the total number of HTTP requests a browser has to make. Using a
tool such as YSlow! for the Firebug Firefox add-on or Chrome developer tools (http://developer
.yahoo.com/yslow/) can help isolate these problems. Our caution about YSlow! is that although
it is a nice tool to assess slowdowns, it was designed by Yahoo! for Yahoo!, and even though this is
talking about scalability, Yahoo!’s sense of scale is likely bigger than yours. So, take the results with
a grain of salt and use some commonsense in weeding out the low-hanging fruit. Generally, good
web development practices will help your theme scale.

For plugins, you have to look at the code. As mentioned previously, it is unlikely that you know
the credentials or skill level of the plugin developer or the terms under which it was created. Some
plugins are created in a straightforward, get-it-done style and may not be very effi cient, even if they
are effective. You can often see this style with multiple SQL queries to get the information required
at any given time rather than a thought-out data access plan. If you are making improvements to
existing code, notify the creator. Put your enhancements back into circulation so the
entire community can prosper. Chapter 16 offers additional information on supporting the
WordPress community.

Scalability really goes hand in hand with performance. The more effi cient your website is, the easier
it is to handle more requests and therefore scale. For the PHP layer of the application stack, turn off
any PHP functionality you are not using. This is good for performance, security, and scaling. Much

c15.indd 386c15.indd 386 12/6/12 1:26 AM12/6/12 1:26 AM

http://en.wordpress.com/stats/traffic/
http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/
http://WordPress.com

Scalability ❘ 387

of this was covered in Chapter 13 under the subject of security and performance; here, the same
rules apply for scalability.

In your php.ini fi le, disable any extensions you are not using, like all those extra database exten-
sions. The default php.ini fi le is designed to work for most people in general circumstances. In
other words, it is designed to just work for everyone. Here, you are talking about tuning it to meet
your specifi c needs and requirements. The following are pretty safe settings to turn off:

;Hide PHP for security
expose_php = Off
;Turn off for performance
register_globals = Off
register_long_arrays = Off
register_argc_argv = Off
magic_quotes_gpc = Off
magic_quotes_runtime = Off
magic_quotes_sybase = Off

Set your memory allowances to the correct values for your server environment and needs. Make sure
error reporting is confi gured properly for the environment — do not show errors on the production
site.

The next layer up is the web server software. Apache is the most common, but WordPress can run
on any number of web server applications. In general, do some research on your web server and the
functionality it requires in order to tune its operation. Turn off any module or extra features you are
not using. Like PHP, the stock Apache confi guration fi le is designed to work for most people in a
general case. It is in their best interest to reduce the amount of effort to get something to work from
the get-go. This can be a huge barrier to entry if too much tweaking is needed just to get something
to work.

Tuning for scalability is the exact opposite of this general use case scenario. You want to disable as
much as possible to make the software as lean as can be and still serve your sites properly with only
the functionality your sites require. A side effect of slimming down your confi gurations is that you
also increase your security posture by not having as many options to exploit.

Another option for scaling is to consider serving static content from an assets server or Content
Delivery Network (CDN). This is a specifi c case of throwing more hardware at the problem, which
is looked at shortly. In short, using one web server for serving dynamic content and another for
serving the static assets, such as images and CSS, can reduce the load across the board. Different
web servers have different strengths. Moving your static content to a secondary URL on a web
server using lighttpd or nginx, which are better at serving this type of content, may be more
effi cient because each web server can be tuned for a more specifi c function. This will also reduce
the load on your dynamic content server, giving it more resources to perform its own duties.

A faux method is also available here to accomplish similar results. You can serve static assets
from a subdomain, even if it is on the same server. Most web browsers are set to download
two to four items in parallel at a time. By moving some of these requests to a subdomain, such as
static.example.com, you can trick the browser into effectively doubling the number of items
being fetched at a time.

c15.indd 387c15.indd 387 12/6/12 1:26 AM12/6/12 1:26 AM

http://static.example.com

388 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

Moving your static assets to a CDN accomplishes the same thing, but on a much larger scale. CDNs
distribute your content across their network of servers, so this not only off-loads the transfer from
your web server, but it can also make the content geographically closer to your visitor. However, you
are also now relying on a third party for portions of your site.

Caching

Caching can occur at the database level, too. Previously, you looked at different levels of caching,
ranging from in-memory cache using Memcache, to the WordPress transient cache of frequently
accessed information, and the WordPress plugin Super Cache, which can bypass the entire dynamic
nature of WordPress altogether and create static HTML fi les.

The database level also has several opportunities for optimizations. MySQL has two main storage
types for tables: MyISAM and InnoDB. Others are available, but these are the two that MySQL
installations have enabled by default.

The ISAM table type was the original storage engine for MySQL. The MySQL team later improved
the engine and created MyISAM. MyISAM is a good general-purpose storage engine. It performs
better with a table with many reads or many writes, but not both. That is, it is a good for storing or
retrieving data, but not ideal for a situation that requires frequent switching between the two. This
is also the default table type for WordPress.

InnoDB, on the other hand, provides better concurrency, through row locking and transactional
support. InnoDB can use non-locking reads to maximize effi ciency and performance. This makes
InnoDB a good storage engine for large volumes of data and datasets that are used in both read and
write contexts. If you’re going to use WordPress in an enterprise where you have many contributing
users, or lively discussion of topics posted by a core group, the write and update load on the data-
base will be signifi cantly higher than that of an individual blogger who posts weekly thoughts on
buildings and food or the Talking Heads.

Switching some of your WordPress tables, such as the highly dynamic ones like wp_comments, to
the InnoDB storage type can create performance improvements, and therefore scalability benefi ts.
Additionally, MySQL also has a confi guration fi le that can be tuned to match your environment.
Again, this is really enterprise level tuning of your MySQL. The average site probably is not going
to dive into the underlying database storage engines, but an enterprise that has extensive infra-
structure on MySQL will have the expertise to make the appropriate adjustments for scaling and
performance.

Regular Maintenance

Finally, your MySQL database needs to be maintained. From time to time, you should run checks on
your database tables and optimize and repair if needed. Maintaining your database is like changing
the oil in your car or defragmenting your hard drive — you have to do it regularly to keep every-
thing running smoothly. This can easily be done through PHPMyAdmin or another MySQL inter-
face. Plugins such as WP-DBManager by Lester Chan (http://wordpress.org/extend/plugins/
wp-dbmanager/) allow you to schedule these tasks, as well as backups, and not have to worry about
it again.

c15.indd 388c15.indd 388 12/6/12 1:26 AM12/6/12 1:26 AM

http://wordpress.org/extend/plugins/wp-dbmanager/
http://wordpress.org/extend/plugins/wp-dbmanager/

Scalability ❘ 389

Hardware Scaling

Now on to the expensive options, adding more hardware. A default WordPress installation is all
encapsulated on one machine. This machine functions as both the web server and database, as
shown in Figure 15-1. This is the simplest and most basic WordPress hardware scenario. Many, if
not most, sites run this way.

The next option is to split the database and web server functions into two servers,
as shown in Figure 15-2. This allows each server to focus on a specifi c task and is
the next logical step when your hardware starts to get taxed by the workload.
At the same time, make sure that you account for the independent database and
web hosts when you create your WordPress confi guration fi les; you’ll need to
know the name of the database host because it’s no longer the “localhost” with
respect to the web server. This is common web application architecture and is very
easy to implement with only a few confi guration changes. Again, make sure you re-
tune your database and web server software to run on their now independent boxes.

Moving forward this can get confusing, and the possibilities are endless, so you
are only going to briefl y review some common scenarios. Depending on your
existing infrastructure, you may have other options available.

You may need to do some investigative forensics to determine your next step. That
is, really fi gure out what the bottleneck is. Regrettably, this can be a reactive plan
of attack rather than a proactive one. So, while preparing to scale out your site,
invest some time in some server monitoring infrastructure. You can also do some
load testing using tools such as Apache Benchmark to see how your current infra-
structure performs and make some educated guesses on where the problems might
develop.

Generally, the next step in scaling is to load-balance your front-end web servers, as shown in
Figure 15-3. In this scenario, you deploy two web servers with identical copies of the WordPress
installation and use a single database server to store all the data.

You have a couple of challenges with this approach. First, you need
a load-balancing mechanism. This can be a hardware appliance
or a software solution. You have many different load-balancing
mechanisms to choose from, and your infrastructure will dictate
which you choose. Enterprises typically have well-established
network infrastructure for virtual IP and load-balancing, and any
horizontal scaling topology should fi t into that IT approved plan.

The second challenge is that you will need to synchronize your
wp-content/uploads folder. That is, if a content creator uploads
media onto one server, because the front ends are load-balanced,
the next request could pull from the other server where the fi le
does not exist. You have the option of moving the uploads folder to a common location, perhaps
on the shared database server, or you can set up a scheduled task to copy the fi les across. The rsync
(http://www.samba.org/rsync/) utility is a good solution for this type of synchronization. You
will have to accept that the fi les will not be there until after the copy has occurred. This means that

Web &

Database

FIGURE 15-1:

WordPress on

one server

Database

Web

FIGURE 15-2:

WordPress

on two servers

Web

Database

Web

FIGURE 15-3: WordPress with

load-balanced web servers

c15.indd 389c15.indd 389 12/6/12 1:26 AM12/6/12 1:26 AM

http://www.samba.org/rsync/

390 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

there can be a lag between when new content is published and when it is available on both nodes of
the web front-end. Some of this lag can be mitigated through a front-end caching mechanism such
as the Super Cache plugin.

The next scenario for scaling means adding a second database
server and implementing MySQL replication. You continue to keep
the load-balanced web servers, but now you have two database
servers, as shown in Figure 15-4.

Technically, this does not offer better performance, but it does
offer the ability to failover should the database server have a
problem. This standby database server is called a hot spare. That
means it is on and up-to-date, but not in current use. Part of scal-
ability is availability. Now, you have two web servers and two
database servers, which means you can remove one server from
each tier and still have a functioning site.

Putting that second database into active work on the website is the next layer up. You still have load-
balanced web servers, but now you can distribute the load on the database servers using MySQL
replication, as shown in Figure 15-5. In this situation you want the writes to the database to be written
to the master MySQL database, and all the reads to come from the slave MySQL database. This solves
the MyISAM challenge where the storage engine excels at reading or writing but not both.

Finally, another WordPress-specifi c option to consider is HyperDB
(http://codex.wordpress.org/HyperDB). HyperDB was
designed by Automattic and is a drop-in replacement for the
standard WordPress database access layer. It is, however, more
powerful than the standard access objects because it can support
sharding or partitioning of the WordPress database information
across multiple databases. This can permit you to move the highly
dynamic data to a more robust server, while the content that is
less in fl ux can be used on a database server with more aggressive
caching. HyperDB also supports replication and failover function-
ality. However, the documentation is sparse, so implementing this
solution is not for the faint of heart.

In the real world, this is how we run some high-traffi c, higher-profi le sites for our clients. We com-
bine load-balanced web front-ends with caching plugins, each of which reads the content from its
own individual slave database server. All writes to the database are written to the master database
server and replicated to the slaves. All uploaded content is duplicated to the other web front-ends
through an rsync-like process.

Database

Web

Database

Web

FIGURE 15-4: WordPress with a

hot spare database server

Write

Database

Web

Read

Database

Web

FIGURE 15-5: WordPress with

load-balanced web and database

servers

c15.indd 390c15.indd 390 12/6/12 1:26 AM12/6/12 1:26 AM

http://codex.wordpress.org/HyperDB

Integration with Enterprise Identity Management ❘ 391

INTEGRATION WITH ENTERPRISE IDENTITY MANAGEMENT

As more applications move to the web, a common problem is the proliferation of usernames
and passwords. This issue is complicated by requirements for secure passwords that are
diffi cult to remember. The increase in access credentials is a known concern and there are many
ways to deal with it, including using password-safe or vault applications, or consolidating creden-
tials into Identity Facilities.

WordPress’ extensibility makes integrating with outside identity providers relatively easy, and many
plugins do just that. The following sections look at two common methods that can be implemented
in a company-wide environment.

LDAP and Active Directory

A common identity provider in a business environment is Microsoft Active Directory (AD), which is
a form of the Lightweight Directory Access Protocol (LDAP). Active Directory is what a Windows-
based network uses to centrally manage workstation usernames and passwords. It can be much
more, but for the purposes of this discussion, you really only care about the username, passwords,
and access rights.

Assuming you have this in place already, why not use this same central repository to access your
WordPress installation? After all, it is the username and password your users are already using to
log in to their workstations. The Simple LDAP Login plugin by Clifton H. Griffi n II (http://
wordpress.org/extend/plugins/simple-ldap-login/) does just that.

Installation is relatively straightforward, as with most plugins. However, this plugin does not check
whether LDAP is currently enabled in your PHP installation, so before proceeding, edit your
php.ini fi le and uncomment the LDAP extension to activate it.

//for Windows
extension=php_ldap.dll
//for Linux
extension=ldap.so

After restarting your web server to load your new PHP settings, proceed to activate the plugin and
visit the plugin settings page. On this control panel, you will be able to enter your LDAP settings.
You will also fi nd a handy testing section to verify your connectivity.

The advanced settings are very important for this plugin, as shown in Figure 15-6. Depending on
your needs, you will have to carefully consider the Login mode. If your LDAP users are not already
provisioned as WordPress users, choosing one of the “Create WordPress accounts” options makes
sense to mirror some or all of your LDAP user base into your WordPress installation. You can also
use the advanced settings to permit only a specifi ed organizational unit in Active Directory to have
login privileges. This is a nice feature to centralize your access and authorization into the already
established Active Directory structure.

c15.indd 391c15.indd 391 12/6/12 1:26 AM12/6/12 1:26 AM

http://wordpress.org/extend/plugins/simple-ldap-login/
http://wordpress.org/extend/plugins/simple-ldap-login/

392 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

Several other LDAP/AD plugins are available, so you may want to evaluate them before picking a
solution. Be sure to check if the plugin supports secure Active Directory access if that is a require-
ment of your organization.

OpenID and OAuth

Active Directory is a specifi c implementation to a Microsoft-centric network. Commercial LDAP
products and their open source OpenLDAP cousin are often used as a common user authorization
and authentication system where federation of multiple, department-level managed identity systems
is required. In either case, this internal enterprise scale authorization is not seen on the wide-open
Internet.

OpenID was developed as a platform-neutral way to manage authorization in a distributed way.
Sounds fancy, does it not? OpenID is set up so that an end user can use the same credentials, in the
form of a unique URL and password, and access any application that consumes OpenID for authen-
tication. OpenID is a little different than the traditional username and password credentials most
people are used to. With OpenID, you use a unique URL instead of the conventional username.
Because it is an open standard, anyone can be an OpenID provider, including WordPress.com, but
you can also become your own OpenID provider.

If your organization does not already have a central authentication or identity facility, OpenID may
be a viable option. Otherwise, it is still a nice add-on for your users, because it allows them to man-
age their own access credentials in their own central location, if they choose to.

The OpenID plugin by the DiSo Development Team (http://wordpress.org/extend/plugins/
openid/) is a simple way to add OpenID functionality to your site. It’s an older plugin, but because

FIGURE 15-6: Advanced settings for the Simple LDAP plugin

c15.indd 392c15.indd 392 12/6/12 1:26 AM12/6/12 1:26 AM

http://wordpress.org/extend/plugins/openid/
http://wordpress.org/extend/plugins/openid/
http://WordPress.com

Content Integration via Feeds ❘ 393

OpenID is a standard, the plugin has not needed to
be updated and it still works. After activating the
plugin, your WordPress login screen and comment
screens will be modifi ed to include an OpenID input
fi eld, as shown in Figure 15-7.

This plugin includes a settings control panel to man-
age the specifi c features, including auto-approving
OpenID published comments. In addition, this
plugin has the ability to enhance your WordPress
installation to be an OpenID provider by using your
author pages, which is a very nice feature.

While OpenID federates user identifi cation data, the
emerging OAuth protocol allows applications to cre-
ate and share specifi c authentication actions. OAuth
has been frequently described as a “valet key” ser-
vice for applications, granting limited sets of capa-
bilities to selected users. Signing into one service
that uses OAuth such as Facebook, Twitter, or even
WordPress.com will create permissions to access or
use another service; there is no setup involved for
the user.

This simplicity has helped OAuth gain popularity
with larger social web sites at the expense of OpenID. While this trend exists on the public-facing
web, OAuth is probably not an appropriate authentication mechanism for an enterprise deployment
of WordPress. Note that WordPress.com uses OAuth to allow applications to interact with the site;
it grants permissions to third party applications. If your enterprise WordPress installation is going to
be accessed by a variety of mobile and desktop applications to extract, load or update content, then
adding an OAuth provider capability may be in order. The few plugins that perform this
function are largely in the experimental state, but they are expected to mature over time. On the
other hand, if your users are content with the WordPress web based interface, and you don’t plan to
make WordPress more of a general purpose back-end CMS, you don’t need to think about OAuth.

CONTENT INTEGRATION VIA FEEDS

In one situation we’ve encountered, we managed many sites, normally a subdomain for each depart-
ment. In this example, each department functions as its own business unit. There are alternatives,
but for various reasons, each site became a unique WordPress installation; today you would prob-
ably do this with WordPress Multisite. One of the challenges then faced is the duplication of content
across multiple sites. Maintaining changes across these separate sites means you have to update a
specifi c content piece many times. For example, press releases usually involve multiple departments,
or at the minimum, need to be published on the fl agship corporate site as well as the individual
department site.

FIGURE 15-7: OpenID-enabled WordPress login

page

c15.indd 393c15.indd 393 12/6/12 1:26 AM12/6/12 1:26 AM

http://WordPress.com
http://WordPress.com

394 ❘ CHAPTER 15 WORDPRESS IN THE ENTERPRISE

In short, the business challenge was to reduce multiple manual updates, which are time-consuming
and error-prone. Luckily, you have WordPress. One of the easiest ways to integrate content is by
using the built-in RSS (really simple syndication) feeds. This is a core feature of WordPress and you
will likely fi nd it to be a tool you frequently use.

Our solution was to publish all press releases on a central site. In this case, the parent site became
our one true location to publish press releases. Press releases are published just like regular posts,
and are then assigned to a specifi c category for each department.

Each departmental WordPress site has the FeedWordPress plugin (http://wordpress.org/extend/
plugins/feedwordpress/) by Charles Johnson installed. This wonderful plugin takes any RSS or
Atom feed and converts it into posts on the site. This is where the magic really happens. WordPress
automatically creates RSS feeds for any fi ltered view, such as posts by category or tag, on the origi-
nating site. So, for this to work, you use the category RSS feed from original site like http://
example.com/category/press/department/feed.

Once you get the plugin installed and activated, you simply enter the URL of the originating feed
and schedule the syndication to your website. FeedWordPress has several customizable settings to
tailor the category, author, and tag information for the incoming feed, which makes this a very
 powerful plugin.

This works well and allows our content creators to publish to one WordPress location yet have the
content distribute out to the additional sites, saving time and energy while also improving accuracy
and timeliness of the content.

Consider another example of WordPress solving a business need. Our company has two separate
web development teams; one focuses on PHP and the other focuses on .NET technologies. In this
example, a specifi cation change to a pre-existing ASP.NET application required that it contain regu-
larly updated content pieces. In the current development cycle, changing these content pieces meant
rebuilding and redeploying the entire application to the multiple load-balanced servers each time this
content changed.

An alternative was to develop a minimal content management application to integrate with the
existing code and permit content creators to manage the content dynamically. Through no fault of
the developers, the development time to add this relatively simple system exceeded the constraints
of the project (time, resources, money — pick one).

WordPress excels at content origination. Although you could have installed a new .NET RSS syndi-
cating web application, you chose to capitalize on an existing WordPress site to manage the dynamic
content on the .NET application side. The .NET development team simply had to refactor an
RSS consumer object to process a specifi c RSS feed and display the contents in the web application.
Our content creators could then use a tool that they were already familiar with to publish the con-
tent whenever they needed to. This is a specifi c example of the content management system applica-
tions of WordPress discussed in Chapter 14, set in an enterprise context where content publication
and origination are the challenges.

WordPress certainly can address business needs. Does that mean WordPress is enterprise class soft-
ware? It does to us. The critical features are WordPress’ own inherent characteristics that fulfi ll
certain defi ciencies or improve processes in your business coupled with its robust ability to integrate

c15.indd 394c15.indd 394 12/6/12 1:26 AM12/6/12 1:26 AM

http://wordpress.org/extend/plugins/feedwordpress/
http://wordpress.org/extend/plugins/feedwordpress/
http://example.com/category/press/department/feed
http://example.com/category/press/department/feed
http://ASP.NET

Summary ❘ 395

with other services. This uncanny ability for WordPress to both stand alone and blend into an exist-
ing infrastructure makes it an ideal problem solver.

SUMMARY

As enterprise needs for specifi c software capabilities continue to grow, WordPress comes up for
consideration again and again. WordPress has many features, as outlined in this chapter, that
make it accessible on an enterprise scale, including low cost, ease of use, and authentication system
integrations, and it is built on well understood platform that IT departments may already have
implemented.

The next chapter will delve into the WordPress community and how you as a developer can get
involved and give back to this great product.

c15.indd 395c15.indd 395 12/6/12 1:26 AM12/6/12 1:26 AM

c15.indd 396c15.indd 396 12/6/12 1:26 AM12/6/12 1:26 AM

WordPress Developer
Community

WHAT’S IN THIS CHAPTER?

 ➤ Contributing to the WordPress project

 ➤ Using the Trac software

 ➤ Working on the WordPress core using Subversion

 ➤ Exploring valuable WordPress resources for further learning

The WordPress community is what truly makes WordPress. As an open source project,
WordPress is continually developed for and by the community, and without community
support the WordPress project would dry up and eventually development would cease. By
getting involved, you can help make WordPress the best open source software package on the
market.

This chapter discusses the different methods by which you can contribute to the WordPress
project. It also covers some valuable WordPress resources to help expand your knowledge of
WordPress and how it works.

CONTRIBUTING TO WORDPRESS

You can contribute to the WordPress project in many different ways. The most obvious way
is to help with the source code that powers WordPress. Helping with the code can include
fi nding and testing bugs, creating patches to fi x bugs and add functionality, and helping test
the patches against the latest WordPress trunk.

16

c16.indd 397c16.indd 397 12/6/12 1:27 AM12/6/12 1:27 AM

398 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

Understanding Trac

Trac is the open source bug-tracking and project management software used to develop the
WordPress project. You can visit the offi cial WordPress Trac website at http://core.trac
.wordpress.org/.

Trac is an easy way to create and discuss tickets regarding WordPress. Whether it is a bug report,
feature request, or enhancement, Trac helps in creating these tickets and having discussions around
them. Have you ever had a new feature idea that you thought would be perfect for WordPress? The
easiest way to start that conversation with the WordPress core Developer team is to create a feature
request ticket in Trac. Have you ever found a bug in WordPress that keeps appearing in every new
version? Creating a bug report is the quickest way to get the issue resolved in the next version. Even
if you aren’t a developer, creating tickets and getting involved in the discussions will ultimately help
WordPress grow in a positive way!

Bug Reporting

All software has bugs and WordPress is no different. All open source projects such as WordPress
need help from the community to identify and fi x bugs. Fortunately, by utilizing Trac, WordPress
makes it very easy to report any bugs you might come across.

The fi rst step in reporting a bug is to verify that the bug is, in fact, a bug in WordPress and not
a plugin or theme issue. The easiest way to accomplish this is to post the bug in the WordPress
Support Forums. You can also discuss the bug in the #wordpress IRC channel, or post a question
to the Testers and Hackers mailing list. Finally, you can search Trac to confi rm that the bug you are
reporting doesn’t already exist in Trac. After you have confi rmed that the bug exists, it’s time to
create a new ticket in Trac detailing the bug.

To report a new bug in Trac, you fi rst need to log in. The Trac login account is synced with your
WordPress.org account so you can use the same account to log in. If you don’t have an account, you
can create a new one at the WordPress.org Support Forums.

After logging into Trac, click the New Ticket link at the top. You’ll be presented with a form to fi ll
out to submit the new bug ticket. Fill in the following fi elds on the new ticket:

 ➤ Summary — Short but accurate and informative title summarizing your bug ticket.

 ➤ Description — Detailed description of the bug. Include steps to reproduce the bug and add
an example URL displaying the bug if possible. Also include platform versions such as
operating system, web server, PHP version, MySQL version, and WordPress version.

 ➤ Type — The type of ticket you are submitting. In this case, use the default of “defect (bug)”
but other options are available.

 ➤ Version — The version of WordPress in which the bug was found. This applies to bug tick-
ets only and not new feature requests.

 ➤ Keywords — Tags used to describe your ticket. Some standard keywords are covered in the
following section.

 ➤ Assign to — Trac username responsible for fi xing the bug. If you plan to fi x the bug your-
self, you can list your username here.

c16.indd 398c16.indd 398 12/6/12 1:27 AM12/6/12 1:27 AM

http://core.trac.wordpress.org/
http://core.trac.wordpress.org/
http://WordPress.org
http://WordPress.org

Contributing to WordPress ❘ 399

 ➤ Component — The component in WordPress where the bug was found.

 ➤ Severity — The signifi cance of the issue. Most bugs would use the default of Normal.

 ➤ Cc — You can Cc yourself on all ticket updates by adding your Trac username or e-mail
address to this fi eld.

After you have fi lled in all of the new ticket information, and previewed the ticket to verify that it’s
correct, click the Create Ticket button to create a new Trac ticket. If you have any attachments to
upload, such as a screenshot of the bug, check the box next to “I have fi les to attach to this ticket.”
On the following screen, you will be allowed to upload any fi les attachments you would like.

Trac Keywords

In Trac, a number of defi ned keywords are commonly used for WordPress tickets. These keywords
are used for reporting to make fi nding tickets easier. Following is a list of these keywords and their
appropriate usage:

 ➤ has-patch — A solution patch fi le has been attached to the ticket and is ready to be tested
before committing to the core of WordPress.

 ➤ needs-patch — The ticket has been confi rmed and a patch is needed to fi x the problem.

 ➤ needs-refresh — The patch no longer applies; it needs to be merged and resubmitted.

 ➤ reporter-feedback — Additional feedback is needed from the ticket creator.

 ➤ dev-feedback — A response is needed from a developer.

 ➤ 2nd-opinion — A request for a second opinion is needed regarding the problem or solution.

 ➤ close — The ticket is a candidate for closure.

 ➤ needs-testing — Someone needs to test the solution.

 ➤ ui-feedback — Response is needed from the WordPress UI Group.

 ➤ ux-feedback — Response is needed from the WordPress UX Group.

 ➤ needs-ui — The ticket requires updates to the visual appearance of one or more items.

 ➤ needs-unit-tests — Unit tests needed to verify and test any patch that may exist.

 ➤ needs-docs — Inline documentation for the code is needed.

 ➤ rtl-feedback — Feedback is needed regarding Right-to-Left language support (RTL).

 ➤ needs-codex — Documentation in the WordPress.org Codex needs to be updated or
expanded.

By adding the correct keywords, your ticket will automatically be included in Trac reports
created for WordPress. For example, the has-patch report shows all tickets with the has-patch
tag: http://core.trac.wordpress.org/report/13. These reports are extremely useful if you
want to help contribute to WordPress.

c16.indd 399c16.indd 399 12/6/12 1:27 AM12/6/12 1:27 AM

http://core.trac.wordpress.org/report/13
http://WordPress.org

400 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

View and Search Tickets

Trac features many different ways to search and fi lter through the tickets available. To view Trac
tickets, click the View Tickets link at the top. The next screen displays multiple predefi ned searches
for fi ltering tickets. To view all tickets in Trac, click the All Tickets link in the Trac menu. The list of
all active tickets can be a bit overwhelming because there are usually hundreds of tickets in Trac.

To make Trac more manageable, some predefi ned reports have been created to help fi lter the tickets
down. Following is a list of the most commonly used reports in Trac:

 ➤ All Tickets — Displays all tickets in Trac.

 ➤ Next Minor Release — Tickets assigned to the next minor release (3.5.x).

 ➤ Next Major Release — Tickets assigned to the next major release (3.x).

 ➤ Commit Candidates — Tickets that have been tested.

 ➤ Has Patch / Needs Testing — Lists all tickets with a patch that need to be tested and verifi ed
to fi x the ticket issue.

 ➤ Needs Patch — Lists all tickets needing a patch.

 ➤ Latest Tickets — Displays the latest tickets submitted to Trac.

 ➤ My Tickets — All tickets created by you.

You can also create your own custom search queries within Trac. To do so, click the small Custom
Query link that appears after you click View Tickets.

By default, the Custom Query page displays all open tickets in Trac. To refi ne this list with your
custom query, you are going to add a fi lter. To the left of the screen is a drop-down select box with
different fi lters. For this example, select Milestone. After you select Milestone, the fi lter appears
under the Filters section across the top of the page. Here you can select the Milestone you want to
view tickets for. Select the next version of WordPress to be released to view all tickets assigned
to that Milestone, as shown in Figure 16-1.

FIGURE 16-1: Custom Query in Trac

The number of open tickets is always a good indication of how close the new version of WordPress
is to being released. You can add multiple fi lters to your custom query. For example, you could add
a fi lter for the needs-testing keyword to fi lter the tickets to show all tickets that need to be tested for
the upcoming version of WordPress.

c16.indd 400c16.indd 400 12/6/12 1:27 AM12/6/12 1:27 AM

Contributing to WordPress ❘ 401

Trac Timeline

Trac also features a timeline of all recent activity within the system. This is great for a top-level
overview of what changes have happened in Trac daily. You can also fi lter the date range and ticket
status. To view the Trac timeline, visit http://core.trac.wordpress.org/timeline.

Browsing Source

One of the major advantages of the Trac software is how it integrates with Subversion (SVN).
Subversion is the version control software used by WordPress to track code changes and commits.
Within Trac, you can view the most current version of the WordPress software, which is sometimes
referred to as bleeding-edge. To view the current WordPress source, click the Browse Source link in
the Trac menu. The current version of WordPress is located in the trunk folder.

Viewing the WordPress source in Trac is extremely useful for seeing new changes made to
WordPress. Next to each fi le the Last Change is listed and linked to the Trac ticket that has details
about that change. The Age is also listed, showing the date when the fi le was last edited.

Notice at the very bottom of the page that there is a link: Download in other formats: Zip
Archive. Just click this link to download the entire bleeding-edge copy of WordPress. After
downloading WordPress from Trac, you can install it on your own server just like a normal installation
of WordPress. This is great for testing out new features in the upcoming version of WordPress. Keep
in mind that this is bleeding-edge software so bugs will most likely exist. You wouldn’t want to run
this version of WordPress on a production website.

Working on the Core

The WordPress software is built by the community, which means anyone can help contribute to the
codebase. When someone says WordPress is built by the community, it doesn’t mean that anyone
can go edit the WordPress source code. To contribute to the WordPress core, you must create a
patch fi le with your changes and submit that fi le for review. If accepted, your changes will be
incorporated into the WordPress core and will be included in the next version release. Contributing
code edits, bug fi xes, and additional functionality is done using Subversion.

It was stated rather emphatically in Chapter 2 that you should never hack core. In this case, you
aren’t actually hacking the core of a WordPress installation, but rather creating patch fi les to submit
for inclusion into the WordPress software.

Understanding Subversion

Subversion is used to make modifi cations to the current codebase and generate patch fi les. A patch
fi le is a text fi le that contains the changes that were made to a specifi c fi le or fi les. To work on the
WordPress core you will need to generate patch fi les and submit them for review. Once a patch fi le
has been accepted as the best fi x for the issue, it will be committed to the WordPress core code.

Hook into the WordPress core

The fi rst step in hooking into the WordPress core is to check out (download) the latest codebase
using SVN. To do so, you’ll need an SVN client on your development machine. For the rest of this
chapter, you’ll consider examples that use the TortoiseSVN client, which is one of the more popular

c16.indd 401c16.indd 401 12/6/12 1:27 AM12/6/12 1:27 AM

http://core.trac.wordpress.org/timeline

402 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

choices for Windows. The WordPress SVN repository is located at http://core.svn.wordpress
.org/trunk/. Checking out a repository creates a copy of it on your local machine. This is the copy
of WordPress you will modify when fi xing bugs and adding new functionality.

Using TortoiseSVN, right-click the folder you want to download the WordPress codebase to and
select SVN Checkout. Make sure to fi ll in the SVN repository URL for WordPress and click OK
to download the codebase. For more information on using Subversion with WordPress, check out
http://codex.wordpress.org/Using_Subversion.

Create a patch/diff File

Now that you have downloaded the WordPress codebase, it’s time to make some changes! Pick any
fi le you want to modify and make the appropriate changes as needed. Make sure to save the fi le
after you are fi nished making edits. Now you need to create a patch fi le that details the changes you
made. To do so, right-click the fi le you modifi ed and select TortoiseSVN ➪ Create Patch. A dialog
box appears, allowing you to select the modifi ed fi les; in this case, only one fi le should appear, so
click OK to proceed. Next, choose a location to save your patch fi le to and give it a unique name.
It’s a good practice to name your patch fi le the same as the fi le you edited, so if you modifi ed
wp-config-sample.php, name your patch fi le wp-config-sample.patch, and click Save. You
have just successfully created a working patch fi le for WordPress! This patch fi le can be submitted
to any Trac ticket as a bug fi x or feature recommendation. If the patch is accepted, a core WordPress
Committer will commit your patch fi le to the core of WordPress. After a patch you have submitted has
been accepted into the WordPress core, you can offi cially call yourself a WordPress core Contributor!

Submitting Plugins and Themes

Submitting plugins to the Plugin Directory is the best way to release a plugin to the public. This also
holds true for submitting themes to the Theme Directory. Ultimately you want as much exposure as
possible for any theme or plugin that you release. Adding your plugin and theme to the appropriate
WordPress.org directory is the best way to accomplish this. Remember that both directories are
hooked in the admin side of every current installation of WordPress. This means anyone running
WordPress can easily install your theme or plugin with just a few clicks.

To submit your theme or plugin, visit the offi cial submission page on WordPress.org:

 ➤ Plugin submission — http://wordpress.org/extend/plugins/add/

 ➤ Theme submission — http://wordpress.org/extend/themes/upload/

Here you’ll fi nd instructions on the proper submission process for both. The submission process is
covered in more detail in Chapter 8, “Plugin Development.”

Documentation

Documentation is a thankless job, yet nearly every developer relies on the documentation at some
point. A great way to contribute to the WordPress community is to help keep the documentation
updated. Assume that every time a new WordPress release comes out, the documentation needs to
be updated to refl ect the changes, whether new functionality is added, behavior is modifi ed, or
certain aspects are scheduled for deprecation.

c16.indd 402c16.indd 402 12/6/12 1:27 AM12/6/12 1:27 AM

http://core.svn.wordpress.org/trunk/
http://core.svn.wordpress.org/trunk/
http://codex.wordpress.org/Using_Subversion
http://wordpress.org/extend/plugins/add/
http://wordpress.org/extend/themes/upload/
http://WordPress.org
http://WordPress.org

Sister Projects ❘ 403

Keeping the documentation current is a daunting task, and given the volunteer nature of the
project, is sometimes neglected. You can often fi nd out-of-date information in the Codex for
WordPress releases from long ago that are no longer best practices, applicable, or even supported.

Documentation updating is not glamorous — it is not the shiny new functionality and features that
everyone is excited about — but it is one of the best ways to support the community and help new
users. Sometimes, solid documentation is what draws new developers in and helps keep them in the
community.

If you are interested in helping out with the WordPress documentation, please subscribe to the
Documentation Mailing list at http://codex.wordpress.org/Mailing_Lists#Documentation.

SISTER PROJECTS

WordPress has a few different sister projects currently available. These software projects are
considered sister projects because they are developed in much the same way as WordPress. Many of
the developers behind these projects also contribute to the WordPress project. Sister projects are also
built as plugins, which makes WordPress integration simple and easy.

BuddyPress

BuddyPress is a plugin that adds a social networking layer to WordPress. BuddyPress can be themed
to match your current website design.

Some of the features available include extended profi les, private messaging, friend connections,
user groups and activity streams, status updates, forums, and more! All BuddyPress features are
independent, meaning you can enable just the features you want and not the entire BuddyPress suite.
For more information on BuddyPress visit http://buddypress.org.

bbPress

bbPress is an open source forum software plugin. The goal of bbPress is to be lightweight, powerful,
fast, and easy to use. bbPress has many of the features you would expect from message board
software, including a simple interface, customizable templates, and spam protection. bbPress can
also run plugins to extend its functionality just like WordPress. bbPress was originally offered as
a separate installation package, but has since been ported over to a WordPress plugin. You can
download bbPress at the offi cial Plugin Directory page, http://wordpress.org/extend/plugins/
bbpress/ or learn more about bbPress at http://bbpress.org.

Future Projects

WordPress is growing at an amazing rate and new projects are always popping up. It’s hard to
imagine what new projects you’ll see in the future, but if WordPress has taught us anything, it’s to
expect the unexpected.

c16.indd 403c16.indd 403 12/6/12 1:27 AM12/6/12 1:27 AM

http://codex.wordpress.org/Mailing_Lists#Documentation
http://buddypress.org
http://wordpress.org/extend/plugins/bbpress/
http://wordpress.org/extend/plugins/bbpress/
http://bbpress.org

404 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

RESOURCES

Many different resources are available for WordPress. This section provides a list of the most
popular resources that you should be aware of to expand your knowledge of WordPress.

Codex

The WordPress Codex is one of the largest and best resources available for WordPress, and is
essentially an online manual for WordPress users. Powered by MediaWiki, the Codex is a wiki-
style documentation project, meaning anyone can contribute to the articles and content featured.
Featuring tutorials, examples, function references, and much more, the Codex takes you through
everything from installation to customization. The offi cial site is http://codex.wordpress.org/
Main_Page.

Support Forums

The WordPress Support Forum is another great resource. You can visit the support forum at the
offi cial URL: http://wordpress.org/support/. The support forum is powered by bbPress,
the forum plugin mentioned in the previous section.

The support forum is separated into multiple sections covering many different topics. The quickest
way to locate related threads is to search the forum using the Search box. There is also a tag cloud
powered by hot topics in the forum. This can be a quick way to see
what the trending topics are in the forum.

Forum threads can also be tagged with keywords about the post. Any
post tagged with the name of a plugin is automatically added to the
plugin’s support forum. The new forum post will be counted under the
Support section in the right sidebar on the plugin detail page, as Figure
16-2 shows.

This provides a support forum section for every plugin in the repository.
To create a forum post about a plugin, just add the plugin slug as a
tag on your post. For example, to create a post about the WordPress
Custom Post Type UI plugin, you would tag your forum post with
custom-post-type-ui, which is the slug from the plugin URL:
http://wordpress.org/support/plugin/custom-post-type-ui.

You’ll also notice the Compatibility section shown in Figure 16-2. This
allows users of the plugin to verify if the plugin works with their
version of WordPress. If enough people report that the plugin is
broken, it is probably not a stable enough plugin to use.

Forum posts can also be marked as resolved. If you post a question and someone replies with a
response that helps you resolve your problem, you should mark your post as resolved. This will
add the text [resolved] to the front of your post topic to let others know the problem has
been resolved. This helps other community members fi nd answers to their questions by viewing
the resolved threads.

FIGURE 16-2: See what oth-

ers are saying

c16.indd 404c16.indd 404 12/6/12 1:27 AM12/6/12 1:27 AM

http://codex.wordpress.org/Main_Page
http://codex.wordpress.org/Main_Page
http://wordpress.org/support/
http://wordpress.org/support/plugin/custom-post-type-ui

Resources ❘ 405

WordPress Chat

WordPress has some very active chat rooms on IRC (Internet Relay Chat). To join a WordPress chat
room you will need to install an IRC client on your computer. Once an IRC client is installed, you
can connect to the Freenode server at irc.freenode.net, and once you have connected, you can
join one or more of the chat rooms listed here:

 ➤ #wordpress — The primary WordPress chat room. Great place to get questions about
WordPress answered quickly and accurately.

 ➤ #wordpress-dev — Chat room dedicated to WordPress core development. Topics are
restricted to working on the WordPress code itself and not for general WordPress inquiries.

 ➤ #wordpress-themes — Chat room for the theme review process.

 ➤ #wordpress-ui — Chat room for the WordPress UI Group.

 ➤ #buddypress-dev — Chat room dedicated to all BuddyPress-related conversations.

 ➤ #bbpress — Chat room dedicated to all bbPress-related conversations.

These IRC chat rooms are a great resource for getting real-time help. Many WordPress experts hang
out in these rooms regularly and love to help out other WordPress enthusiasts. This is also a great
place to expand your knowledge of WordPress.

The WordPress core developers host a weekly development chat in #wordpress-dev. This scheduled
chat covers a preset agenda of topics regarding the future development of WordPress, and many
decisions are made on features and functionality in these weekly chats. The topics typically cover
features being developed for the upcoming version of WordPress, but can also cover additional
items.

For more information on IRC and WordPress chat rooms, visit the offi cial Codex IRC page at
http://codex.wordpress.org/IRC. This page details how IRC works, how to download and
install an IRC client, how to connect to an IRC server, and also how to join a WordPress chat room.

Mailing Lists

WordPress has multiple mailing lists focused on different topics of the WordPress project. Most
mailing lists are two-way conversations, meaning that an e-mail is sent to the list with a problem or
question, and another member of the mailing list responds with the answer. Anyone subscribed to
that mailing list will be able to track the conversation. To register for any mailing list, just visit the
corresponding join link.

Available mailing lists include:

 ➤ Announcements — List for major announcements regarding WordPress. E-mail is very low
frequency and one-way, meaning no conversations can take place.

 ➤ How to Join — Edit your WordPress.org profi le and select Subscribe to WordPress
Announcements under Mailing Lists.

 ➤ Documentation — List for coordinating and collaborating on WordPress Codex documenta-
tion. If you plan on contributing to the Codex, this list is a must join.

c16.indd 405c16.indd 405 12/6/12 1:27 AM12/6/12 1:27 AM

http://codex.wordpress.org/IRC
http://WordPress.org
http://irc.freenode.net

406 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

 ➤ E-mail — wp-docs@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-docs

 ➤ Hackers — Primary mailing list for discussions on extending through plugins or core code
modifi cations. Many discussions revolve around core functionality of WordPress.

 ➤ E-mail — wp-hackers@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-hackers

 ➤ Testers: Discussions regarding the current nightly, alpha, or beta version of WordPress.

 ➤ E-mail — wp-testers@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-testers

 ➤ XML-RPC — Discussions revolving around the XML-RPC topic of WordPress.

 ➤ E-mail — wp-xmlrpc@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-xmlrpc

 ➤ Support Forum Volunteers — Discussions involving WordPress Forum Support and provid-
ing support to users.

 ➤ E-mail — wp-forums@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-forums

 ➤ SVN Updates — List for tracking SVN repository updates. E-mail is sent for every update
along with information on the changes made. SVN is the version control system WordPress
core developers use to track changes in the WordPress core fi les.

 ➤ E-mail — wp-svn-bounces@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-svn

 ➤ Trac — List for tracking changes in Trac, the open source bug tracking system WordPress
uses for tracking development on the WordPress core. This is a very high-traffi c e-mail list.

 ➤ E-mail — wp-trac-bounces@lists.automattic.com

 ➤ How to Join — http://lists.automattic.com/mailman/listinfo/wp-trac

Certain WordPress mailing lists can be high traffi c, so it’s a good idea to create a rule in your e-mail
program to automatically fi lter WordPress mailing list e-mails to a specifi c folder. That way, you can
review the conversations taking place at your leisure.

To subscribe to any of these mailing lists, or for more information, visit the offi cial Codex mailing
list page at http://codex.wordpress.org/Mailing_Lists. To view all available mailing lists, visit
the offi cial Automattic mailing list page at http://lists.automattic.com/mailman/listinfo.

External Resources

There are many external resources for WordPress outside of WordPress.org. Following is a list of the
most common:

c16.indd 406c16.indd 406 12/6/12 1:27 AM12/6/12 1:27 AM

http://lists.automattic.com/mailman/listinfo/wp-docs
http://lists.automattic.com/mailman/listinfo/wp-hackers
http://lists.automattic.com/mailman/listinfo/wp-testers
http://lists.automattic.com/mailman/listinfo/wp-xmlrpc
http://lists.automattic.com/mailman/listinfo/wp-forums
http://lists.automattic.com/mailman/listinfo/wp-svn
http://lists.automattic.com/mailman/listinfo/wp-trac
http://codex.wordpress.org/Mailing_Lists
http://lists.automattic.com/mailman/listinfo
mailto:wp-docs@lists.automattic.com
mailto:wp-hackers@lists.automattic.com
mailto:wp-testers@lists.automattic.com
mailto:wp-xmlrpc@lists.automattic.com
mailto:wp-forums@lists.automattic.com
mailto:wp-svn-bounces@lists.automattic.com
mailto:wp-trac-bounces@lists.automattic.com
http://WordPress.org

Resources ❘ 407

 ➤ WordPress Hooks Database (http://adambrown.info/p/wp_hooks) — Website detailing
all hooks (actions and fi lters) in WordPress by version. Great for referencing latest hook
additions when a new version of WordPress is released.

 ➤ PHPXref for WordPress (http://phpxref.ftwr.co.uk/wordpress/) — Features
cross-reference code library for WordPress. Use to easily view all variables, functions,
classes, and constants used in WordPress. Xref shows where each item is defi ned as well as
where it is referenced through the WordPress code.

WordCamp and Meetups

WordPress is powered by the community behind it and because of that the community loves to get
together and talk WordPress! This can happen a number of different ways but the two most popular
events are WordCamps and WordPress Meetups.

WordCamps conferences focused on anything and everything WordPress. These events usually have
hundreds of attendees and multiple tracks for speakers with a wide array of topics. If you are
interested in WordPress at all, these are must-attend events. To fi nd a WordCamp in your area, visit
the offi cial WordCamp Central website at http://central.wordcamp.org/.

WordPress Meetups are smaller local-based gatherings. These are usually informal get-togethers
where attendees talk WordPress and share their experiences and knowledge with others. WordPress
Meetups are typically held monthly or quarterly. To fi nd a Meetup in your area, check out the
offi cial WordPress Meetup Groups page at http://wordpress.meetup.com/.

WordPress.TV

WordPress.TV is a website dedicated to videos about WordPress. The website features tutorials for
both WordPress self-installs and WordPress.com. Also featured on WordPress.TV are WordCamp
footage and speaker sessions, interviews, and much more. This is a central repository for all videos
related to WordPress. WordPress.TV is a great resource for learning more about WordPress through
videos. Visit the offi cial site at http://wordpress.tv/.

Theme/Plugin Directories

The fi rst place to visit after installing WordPress is the Plugin and Theme directories. In the Plugin
directory you can download thousands of plugins to add all sorts of amazing functionality to your
website. The Theme directory features more than a thousand free themes for WordPress that can
be used to give your site a new look. Remember that both of these directories can be browsed from
within your WordPress installation.

 ➤ Plugin directory — http://wordpress.org/extend/plugins/

 ➤ Theme directory — http://wordpress.org/extend/themes/

WordPress Ideas

WordPress.org features an Ideas area for gathering ideas for future features in WordPress. Here you
can vote on your favorite ideas and view a list of the most popular ideas based on votes. The most

c16.indd 407c16.indd 407 12/6/12 1:27 AM12/6/12 1:27 AM

http://adambrown.info/p/wp_hooks
http://phpxref.ftwr.co.uk/wordpress/
http://central.wordcamp.org/
http://wordpress.meetup.com/
http://wordpress.tv/
http://wordpress.org/extend/plugins/
http://wordpress.org/extend/themes/
http://WordPress.com
http://WordPress.org

408 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

popular ideas are usually reviewed before the development of a new version of WordPress and typi-
cally a few of them will make it into the new release. You can visit the offi cial Ideas page at http://
wordpress.org/extend/ideas/.

WordPress Development Updates

Staying informed with the development of WordPress is a great resource for tracking upcoming
WordPress changes and features. As new versions of WordPress are developed and released, they
come with new features and functionality. Understanding what these new features are can help
with planning new projects for WordPress. The easiest way to do this is at the offi cial WordPress
Development Updates site at http://make.wordpress.org/core/.

The Make WordPress core site uses the popular P2 theme, which is very similar to a Twitter-like
theme for WordPress. The site features updates and discussions on the WordPress project. The site
is also the location for information regarding the weekly WordPress Developer Chats in the
#wordpress-dev IRC channel. The date and time for these meetings is featured in the sidebar. There
is also a post detailing the topics for the weekly meeting. Anyone can contribute topics for the
meeting by responding to this post.

Make WordPress.org

A new resource is http://make.wordpress.org. This section of WordPress.org is a central hub for
offi cial resources to help people develop for WordPress. Currently, there are eight sections, which
are specifi c to different areas of WordPress:

 1. make.wordpress.org/core/ — Blog for the core development team of WordPress.

 2. make.wordpress.org/ui/ — Blog for the WordPress UI design group.

 3. make.wordpress.org/plugins/ — Blog for announcements and resources for plugin
developers.

 4. make.wordpress.org/themes/ — Blog for announcements and resources for theme
designer and developers.

 5. make.wordpress.org/support/ — Blog for support members. This is not a blog for
receiving support, but rather, it’s for members who provide support and covers how they can
improve the process.

 6. make.wordpress.org/polyglots/ — Blog for WordPress translators.

 7. make.wordpress.org/accessibility/ — Blog for the WordPress accessibility group.

 8. make.wordpress.org/mobile/ — Blog for announcements and resources for WordPress
mobile developers.

The sites listed provide an excellent way to get involved in a specifi c area of WordPress.

WordPress Podcasts

Podcasts are a great way to stay informed on the latest news and information on any topic.
Currently, two WordPress-centric podcasts are actively being produced.

c16.indd 408c16.indd 408 12/6/12 1:27 AM12/6/12 1:27 AM

http://wordpress.org/extend/ideas/
http://wordpress.org/extend/ideas/
http://make.wordpress.org/core/
http://make.wordpress.org
http://WordPress.org
http://WordPress.org
http://make.wordpress.org/core/
http://make.wordpress.org/ui/
http://make.wordpress.org/plugins/
http://make.wordpress.org/themes/
http://make.wordpress.org/support/
http://make.wordpress.org/polyglots/
http://make.wordpress.org/accessibility/
http://make.wordpress.org/mobile/

Resources ❘ 409

WP Late Night

The WP Late Night podcast is a live weekly podcast hosted by Brad Williams (that’s me!), Dre
Armeda, and Ryan Imel. The show is created and released on WPLateNight.com. The podcast also
streams live video of the shows being recorded so you watch the hosts and guests of the show as they
discuss all things WordPress. You can visit the website at http://wplatenight.com.

WPCandy.com Shows

WPCandy.com has a slew of WordPress-related podcasts. With the Roundtable Podcast, the
WPCandy Podcast, the Weekly Theme Show, and more, there’s no shortage of awesome WordPress-
related audio content. For a full list of shows and episodes produced by WPCandy.com visit
http://wpcandy.com/shows.

WordPress News Sites

Many different WordPress-related websites exist. This section provides a list of the most popu-
lar WordPress-focused sites for news and information regarding anything and everything
WordPress-related.

WPCandy.com

WPCandy.com has become the dominant WordPress news site out there. The site was relaunched
in early 2010 by Ryan Imel and has since grown at a rapid pace. With in-depth editorials, detailed
tutorials, community member interviews, podcasts, and more, it’s easy to see why WPCandy.com is
the resource for WordPress-related news.

WPRealm.com

WPRealm.com is one of the newer sites in this list. Launched in 2012 by some very prominent
community members, WPRealm.com is a blog concerning all things WordPress. The blog also
loves contributors and urges anyone interested in writing to submit articles to the website. You can
visit the website at http://wprealm.com.

WPForce.com

WordPress Force is another great website writing about all things WordPress. The website covers
WordPress releases, plugin and theme releases and reviews, and much more. You can visit the
website at http://wpforce.com.

WPEngineer.com

WPEngineer features tips and tricks, news, and improvements for WordPress. The site features more
in-depth tutorials that dive into the core of WordPress and its functionality. These tutorials are
focused on intermediate-level WordPress users and developers. You can visit the website at
http://wpengineer.com/.

c16.indd 409c16.indd 409 12/6/12 1:27 AM12/6/12 1:27 AM

http://wplatenight.com
http://wpcandy.com/shows
http://wprealm.com
http://wpforce.com
http://wpengineer.com/
http://WPLateNight.com
http://WPCandy.com
http://WPCandy.com
http://WPCandy.com
http://WPCandy.com
http://WPCandy.com
http://WPCandy.com
http://WPRealm.com
http://WPRealm.com
http://WPRealm.com
http://WPForce.com
http://WPEngineer.com

410 ❘ CHAPTER 16 WORDPRESS DEVELOPER COMMUNITY

WordPress Alltop

Alltop is basically an RSS aggregator for specifi c topics. The WordPress Alltop page features news
and information from the top WordPress-related websites. It also lists important WordPress
Twitter accounts that are worth following for news and information. You can visit the website at
http://wordpress.alltop.com/.

WordPress Planet

WordPress Planet is an aggregation of blogs writing about WordPress. This includes posts from
core contributors and very active community members. This is the same news feed featured on the
Dashboard of every default installation of WordPress under the Other WordPress News dashboard
widget. Visit the website at http://planet.wordpress.org/.

Planet WordPress

Planet WordPress is also an RSS aggregator that keeps track of bloggers who contribute to
WordPress. This feed differs from WordPress Planet in that it extends the WordPress Planet feed
with even more bloggers. These bloggers are mainly plugin developers and core contributors
for WordPress. The news feed is maintained by Ozh Richard, a very respected developer in the
WordPress community. The website is located at http://planetwordpress.planetozh.com/.

SUMMARY

In this chapter you learned the different ways you can contribute to the WordPress project, including
using Trac bug-tracking software, working on the WordPress core using Subversioin, and submitting
plugins and themes. You also learned about sister projects to WordPress including BuddyPress and
bbPress. Finally, you learned about the diverse resources available as you work with WordPress.

c16.indd 410c16.indd 410 12/6/12 1:27 AM12/6/12 1:27 AM

http://wordpress.alltop.com/
http://planet.wordpress.org/
http://planetwordpress.planetozh.com/

411

INDEX

A

absint(), 62, 150, 193, 272
ABSPATH, 145, 183, 195
Action hooks, 151–156. See also

specifi c Action hooks
Action Reference, 156
activating functions, 142–143
Active Directory, 391–392
add_action(), 64, 152
add_blog_option(), 276
add_comments_page(), 160
add_dashboard_page(), 160
add_filter(), 64, 151, 152
add_hook(), 64
adding metadata, 134–135
add_links_page(), 160
add_management_page(), 160
add_media_page(), 160
add_menu_page(), 158, 159,

161, 275, 278
add_meta_box(), 169–170, 188
add_meta_boxes Action hook,

170, 188
add_new, 121
add_new_item, 121, 131
add_option(), 63, 156, 277
add_options_page(), 160, 186
add_or_remove_items, 131
add_pages_page(), 160
add_plugins_page(), 160
add_post_meta, 64, 134, 137
add_posts_page(), 160
add_post_type_support(),

125
add_settings_field(),

166, 167

add_settings_section(), 166
add_shortcode(), 267
add_site_option(), 63, 276,

277
add_submenu_page(), 158,

159, 161, 275
add_theme_page(), 160
add_user_meta(), 64
add_users_page(), 160
admin_head, 154, 156
admin_init, 155, 161, 166, 279
Administrator role, 362
admin_menu Action hook, 159
admin_url(), 146
AdSense, 78, 304, 305, 306,

307, 340
advanced queries, Loops, 91–92
/advanced-cache.php, 30, 38
advertising, 303–307
advertising plugins, 304–305
AJAX, 27, 147, 314, 335
AJAXy, 378, 379
Akismet, 2, 58, 113, 352
Allbut, Jonathan, 368
all_items, 131
Alltop, 410
Alsup, Mike, 375
alt attributes, 326
Alternative PHP Cache, 345
Announcements, mailing list,

405
Apache

Directory directive, 47
document root, 47
$is_apache, 96
LAMP, 44–45, 346–347
lighttpd, 9, 387

MAMP, 10, 44, 45, 46, 47
permissions, 356–357
virtual hosts, 51–53
WAMP, 45, 46, 47, 48, 49,

51, 213
WAMPSERVER, 45, 47
web server caching, 346

APIs (WordPress), 69–71.
See also specifi c APIs

API functions, 62
Appert, Julien, 371
architecture of participation, 7
archival templates, 231
Archived, site status, 263
archive.php, 227–228
archive-slides.php, 231
arguments, 117–121, 130
array of options, plugins,

157–158, 185
array_map(), 280
Aside, post format, 250
assets, themes and, 214–215
Attachment, default post type,

116
attachment.php, 233
attacks

brute-force attacks, 354,
355

cross-site request forgery,
148

cross-site scripting, 70, 150,
252

salt values, 25, 113, 355
SQL injection attacks, 26,

106, 111, 148
Audio, post format, 250
author parameters, 84

bindex.indd 411bindex.indd 411 12/6/12 1:09 AM12/6/12 1:09 AM

412

Author role – confi guration fi le, security and

Author role, 361
$authordata global variable,

94–95
author.php, 236–237
automating spam detection,

351–352
Automattic, 2, 3. See also

Akismet; Twenty Eleven
AUTOSAVE_INTERVAL, 27
AWStats, 338–340

B

b2/cafelog system, 2
badges, social networking,

292–294
barebones themes, 215
bbPress, 2, 379, 380, 403, 404,

405
#bbpress, 405
beautiful URLs, 321
Behrens, Kevin, 363, 367
Bing.com, 322
Bio Widget, 175, 176
blacklists, 351–352
bleeding-edge version, WordPress,

22, 401
Blog ID (site ID), 260, 265–266
blogs.dir directory, 37, 38, 261
body_class(), 239
Bones theme, 256
Boring page template, 243
Brachhold, Arnie, 321
branches folder, SVN, 209
Brave New Code, 335
breaking code, 222
browsers

browser detection
global variables, 95–96
WPTouch, 335

caching hierarchy, 343
brute-force attack, 354, 355
BuddyPress, 2, 380, 382,

403, 405
#buddypress-dev, 405
bug reporting, Trac software,

398–399

buttons, social media,
291–293

C

cache management. See also
scalability

caching hierarchy, 343
enterprise-scale WordPress,

388
MySQL query cache, 348
object caching, 347
scalability, 343–348
transient caches, 301–303,

347–348, 388
web server caching, 343,

345–347
WordPress system

complexity, 344–345
Cameron, Dan, 333
can_export, 119
canonical URLs, 76
Caoimh, Donncha O, 347, 358
capabilities argument, 119
capability_type, 119
capital_P_dangit, 63
CAPTCHAS, 350–351
Carrington theme, 257
cascading style sheets. See CSS
categories

parameters, 84
taxonomy, 126

category.php, 228–230
CDN. See Content Delivery

Network
cForms 11 plugin, 379
Chan, Lester, 54, 388
Changelog section, readme.txt,

207–208
character set, 25
charset, 25
Chat, post format, 250
chat, WordPress, 405
check_admin_referer(),

147–148, 190, 280
child themes, 215–216, 251–256.

See also parent themes

choose_from_most_used, 131
close, Trac keyword, 399
cloud computing, 350
CMS. See content management

system
code comments, 58
code overview, 21–39. See also

.htaccess; wp-config.php
breaking code, 222
directory and fi le structure,

23
downloading WordPress,

21–23
.maintenance fi le, 35–36

Codex
controversy, 71
database changelog, 102
defi ned, 66, 404
described, 4–5
Function Reference, 67–69,

133
template hierarchy fl owchart,

233–234
using, 66–67
WordPress APIs, 69–71
wp-config options, 31

coding, for Multisite, 265–287
collecting external content,

294–303
colors, visual design elements,

313
comment_post Action hook,

152, 155
comment_post_ID, 105, 114
comments, spam and, 350–352
comments.php, 237–238
comments_popup_link(), 80
comment_text, 153
commercial situations, WordPress

in, 5–6
commercial themes, 3, 256, 257,

258
community intersection,

WordPress, 4–5
complexity, WordPress, 344–345
conditional tags, 223–224
confi guration fi le, security and,

354

bindex.indd 412bindex.indd 412 12/6/12 1:09 AM12/6/12 1:09 AM

http://Bing.com

413

confl ict, advertising content –database class (wpdb class)

confl ict, advertising content,
306–307

consistent navigation, user
experience, 310–312

constructor, 176, 192
content. See also pages; posts

defi ned, 76
duplicate, 321–323
easy to fi nd, 314

content aggregation, 289–308
advertising, 303–307
collecting external content,

294–303
feeding WordPress upstream,

292
generic XML data, 299–301
getting noticed, 290–291
Google Maps, 298–299
overview, 289–290
privacy and history, 307–308
social media buttons,

291–293
social networking badges,

293–294
transients, 301–303
YouTube video integration,

295–296
Content Delivery Network

(CDN), 315, 350, 387
content directory, security, 355
content display, 224–234.

See also Loops; theme creation
archival templates, 231
Loop, 73
template hierarchy, 233–234

content hierarchy, CMS and,
376–379

content management system
(CMS), 365–382

content hierarchy, 376–379
defi ned, 6–7, 365–367
featured content pages,

373–376
forms management,

379–380
forums, 379
homepages, 372–373
other systems, 380–382

roles and delegation,
367–368

theme and widget support,
370–372

workfl ow, 368–370
content organization, CMS,

370–379
content selection, 73, 74, 100.

See also Loops
content sharing sites, tags and,

324
content tables, 104–105
content_url(), 146
contributing to WordPress,

397–403
Contributor role, 361
controversy, Codex, 71
conversation, 7–8
COOKIEPATH, 29
copyright law, 5
core (WordPress core), 57–72.

See also Codex
Akismet, 58
caching hierarchy, 343
contents, 57–58
deprecated functions, 65–66
exploring, 62–65
functions search, 60–62
hacking, 71–72, 382
Hello Dolly, 58
hook into, 401–402
inline documentation, 59, 60
as reference, 58–66
themes, 58
working on, 401–402

create_category, 154
cron, 31, 338
cross-site request forgery (CSRF),

148
cross-site scripting (XSS), 70,

150, 252
Crowd Favorite, 55, 257, 386
crowd sourcing, 317, 318, 352,

367
CSRF. See cross-site request

forgery
CSS (cascading style sheets)

Bones theme, 256

child themes, 252, 253, 254
separating concerns, 324
style.css fi le, 217–218
themes, 214
Zen Garden, 324

CSS ID attribute, 170
CSS ID name, 176
CSS3, 330–331, 335–336
current_time(), 62
$current_user global variable,

95
custom database tables, plugins,

180–182
custom meta box, 172–174
custom page templates. See page

templates
custom parameters, 84
custom post types, 116–125
Custom Search Engine, Google,

333, 334
custom settings section, 165–169
custom taxonomies, 128–133
custom widget, 178–179
customizing Loop, 75, 81–82
CUSTOM_USER_META_TABLE, 29
CUSTOM_USER_TABLE, 29

D

Dashboard, 17–19, 352, 353
Dashboard Widgets, 179–180
Dashboard Widgets API, 70, 179
data validation, 148–151
database (WordPress database).

See also database tables
changelog, 102
data management, 101–114
diagram, 101–102
direct manipulation, 111–114

database class (wpdb class),
106–111

complex database
operations, 108–109

dealing with errors, 110–111
prepare(), 106–107, 109
simple database queries,

106–108

bindex.indd 413bindex.indd 413 12/6/12 1:09 AM12/6/12 1:09 AM

414

Database confi guration dialog box – File Monitor, WordPress

Database confi guration dialog
box, 12

database schema, 101–103,
287–288

database tables, 103–106. See
also specifi c database tables

custom, plugins, 180–182
Multisite-specifi c, 287
taxonomy table structure,

126–127
date parameters, 84
DB_CHARSET, 25
DB_COLLATE, 25
dbDelta(), 181
db-error.php, 235–236
DB_HOST, 25
DB_NAME, 25
DB_PASSWORD, 25
DB_USER, 25
deactivate plugins, 37
deactivating functions,

142–143
debugging

enabling, local development
environment, 48–50

SAVEQUERIES, 27–28, 110
WP_DEBUG, 26, 28, 49

default post types, 115–116
default search, 331–332
default taxonomies, 126
default_content Filter hook,

154
defi ned period of time, 301–302
delegation, CMS, 367–368
delete_blog_option(), 276
Deleted, site status, 263
delete_option(), 157, 183
delete_post_meta(), 135–136
delete_site_option(), 276
delete_transient(), 63
delete_user_meta(), 64
deleting metadata, 135–136
deployment cycle, 42
deprecated functions, 65–66
deprecated.php fi le, 66
Description section, readme

.txt, 207

determining paths, plugins,
145–146

developer community. See
WordPress Developer
Community

developing locally. See local
development environment

development environment,
deployment cycle, 42

dev-feedback, 399
Diff/patch fi le, 402
direct database manipulation,

111–114
directories, WordPress, 23.

See also specifi c directories
Directory directive, Apache, 47
disconnect, menu management,

247, 248, 377
DiSo Development Team, 392
DNS, 51, 349
do it yourself installation, 10–17.

See also WordPress
Doctorow, Cory, 5, 7
document root, 28, 45–47
documentation, 402–403, 405
don’t hack the core!, 71–72, 382
Don’t Repeat Yourself. See DRY

principle
downloading WordPress, 21–23
DRY principle (Don’t Repeat

Yourself), 220–224
duplicate content, 321–323

E

_e(), 143
E_ALL, 49
easy to fi nd content, 314
e-commerce, CMS, 380
Edit Flow plugin, 370, 385
edit_item, 121, 131
Editor role, 361–362
edit_post_link(), 80
E-mail, mailing list, 406
email_exists, 64
EMPTY_TRASH_DAYS, 31
enabling Multisite, 261–262

enhancements, 246–251,
330–331

enterprise software, 383
enterprise-scale WordPress,

383–395
cache management, 388
feeds, 393–395
hardware scaling, 389–390
identity management

integration, 391–393
MySQL maintenance, 388
performance tuning,

386–388
scalability, 386–390
when to use, 383–385

Erlewine, Michael Yoshitaka, 378
error level, PHP, 49
error_log, 28
errors, wpdb class and, 110–111
escaping functions, 111, 148–149,

177
esc_attr(), 63, 149, 177
esc_html(), 63, 149
esc_sql(), 149
esc_textrea(), 149, 177
esc_url(), 63, 149, 163
E_STRICT, 49
exclude_from_search, 118
execution path analyzer, 344
external content, collecting,

294–303
external resources, 406–407

F

F5 BIG-IP, 349
Facebook, 292, 299
fake fully qualifi ed domain

names, 50–51, 54
Fancy page template, 243
FAQ section, readme.txt, 207
featured content pages, 373–376
feeding WordPress upstream, 292
feeds, CMS and, 393–395
FeedWordPress plugin, 394
File Monitor, WordPress,

358–359

bindex.indd 414bindex.indd 414 12/6/12 1:09 AM12/6/12 1:09 AM

415

fi le permissions – hacking core

fi le permissions, 30
__FILE__ PHP constant, 146
fi le structure, WordPress, 23
file_get_contents(), 300
fi lename, plugin, 140
Filter hooks, 151–154
Filter Reference, 156
Firebug, 315, 386
First Post, 19–20
fi ve-minute installation, 2, 10,

13, 19
fl ow, of Loop, 77–79
fl owchart, template hierarchy,

233–234
folder structure, plugin, 140
footer.php, 222
FORCE_SSL_ADMIN, 31, 356
FORCE_SSL_LOGIN, 30–31, 62,

356
force_ssl_login, 62
forcing SSL, on login, 356
form(), 192–193
form nonce, 147
formatting functions, 63
formatting.php fi le, 63
forms management, CMS and,

379–380
forums, CMS, 379
forward compatibility,

permalinks, 32
404.php, 235–236
Freytag, Brian, 293
front-page.php, 225–227
FS_CHMOD_DIR, 30
FS_CHMOD_FILE, 30
FTP installation, themes,

212–213
fully qualifi ed domain names,

50–51, 54
functions. See also core; specifi c

functions
activating, 142–143
API, 62
Codex, 67–69
deactivating, 142–143
deprecated, 65–66
escaping, 111, 148–149, 177

fi nding, in core, 60–62
formatting, 63
inline documentation, 59, 60
Multisite, 266–270
Options API, 63
pluggable, 63
Plugin API, 64
in post process, 64
sanitizing, 150, 271
*_site_option(), 276–277
special post type functions,

124–125
taxonomy.php fi le, 65
User API, 64
widget functions, Halloween

Store plugin, 192–194
working outside Loop,

97–99
Function Reference, 67–69, 133
functions.php fi le

described, 62
theme creation, 238–240
Twenty Eleven, 323

G

Gallery, post format, 250
Gardner, Brian, 257
generic XML data, 299–301
Genesis theme, 257
GeoMark, 328
$_GET, 154
get_avatar, 63
get_blog_count(), 286
get_blog_details(), 266
get_blog_option(), 276
get_current_theme, 65
get_currentuserinfo, 63
get_option(), 63, 157, 158, 162
get_permalink(), 97
get_post(), 98–99
get_post_custom(), 64, 137
get_post_format(), 219, 220
get_post_meta(), 64, 99, 136,

137, 173
get_posts(), 64, 74, 75, 78, 81,

82, 87–88, 374

get_post_types(), 124get_
row(), 108

get_site_option(), 63, 276,
279

get_sitestats(), 287
get_super_admins(),

61, 285
get_taxonomies, 65
get_template_part(), 219,

221, 223, 241
get_the_term_list(), 133
get_the_title(), 99
getting noticed, 290–291,

320–329
get_transient(),

63, 302
get_userdata, 63, 68
get_user_meta(), 64
get_users(), 64
global navigation, 246, 310,

311, 312, 314, 318,
376, 377

global variables, 93–97
Gnu Public License. See GPL
good passwords, 354
Google

AdSense, 78, 304, 305, 306,
307, 340

Custom Search Engine, 333,
334

Maps, 298–299
trackbacks, 323–324
Webmaster Tools, 321, 322,

327, 334
XML Sitemaps plugin,

321–322
Google Analytics, 340–342
GPL (Gnu Public License), 5–6,

141–142, 185
Gravatar, 2
Gravity Forms, 379–380
Griffi n, Clifton, H., 391

H

Hackers, mailing list, 406
hacking core, 71–72, 382

bindex.indd 415bindex.indd 415 12/6/12 1:09 AM12/6/12 1:09 AM

416

Halloween Store plugin – K.I.S.S. methodology

Halloween Store plugin,
184–203

complete source code
(halloween-store.zip),
195–203

meta box, 188–190
settings page, 186–187
shortcode, 190–191
__() translation function,

186
widget functions, 192–194

halloween_options, 185
halloween_sanitize_options,

188
halloween-store.php, 184
halloween_store_settings_

page(), 186
halloween-store.zip (plugin

source code), 195–203
handle 404 errors, 235–236
hardware scaling, enterprise-scale

WordPress, 389–390
has_archive, 118, 120, 123
hashing salt values, 25, 113, 355
has-patch, 399
hCard, 328
header, plugin, 140–141, 184–185
header.php, 221–222
Hello Dolly, 58
hiding WordPress version

information, 353
hierarchical argument, 118,

130
high availability, load balancing,

350
history, privacy and, 307–308
homepages

CMS, 372–373
front-page.php, 225–227

home.php, 225, 234
home_url(), 146
hook into WordPress core,

401–402
hooks. See also specifi c Action

hooks; specifi c Filter hooks
Action hooks, 151–156
Filter hooks, 151–154
Hooks Database, 407

hosting options, WordPress, 8–9
hosts fi le, 51, 52
hs_widget(), 192
.htaccess, 31–35. See also

permalinks
HTML

esc_html(), 149
esc_textrea(), 149, 177
$_GET, 154
microformats, 327–329
POSH, 324, 325, 327
$_POST, 154
Semantic, 324–326
separating concerns, 324
valid, 326–327
wp_kses(), 150, 177
XFN, 327, 328

HTML5, 326, 329–330
HTML5Shiv, 329, 330
HTTP API, 70
httpd.conf, 47, 48, 52
httpd-vhosts.conf, 51
HTTPS, 30, 31, 62, 146, 356
Hybrid Core theme, 257
HyperDB, 350, 390

I

i18n. See internationalization
ID-driven URLs, 32
Ideas area, WordPress,

407–408
identity management, enterprise-

scale WordPress, 391–393
images

alt attributes, 326
post format, 250
themes and, 214–215

image.php, 233
in_array(), 61
includes_url(), 146
index.php fi le, 36, 218–220
init Action hook, 117, 128, 154,

155, 185, 277, 283
inline documentation, 59, 60
InnoDB, 388
INSERT, 108, 109

insert(), 109
installation problems, 14–17.

See also WordPress
Installation section, readme

.txt, 207
interactivity features, CMS,

379–380
internationalization (i18n),

143–145, 184, 243
intval(), 149
IP addresses

blacklist, 351
.htaccess, 35
wildcard, 35

IRC chat rooms, 405
Irish, Paul, 329
$is_apache, 96
is_array(), 61
is_email(), 63
$is_IIS, 96
$is_iphone, 96
$is_mobile, 96
is_multisite(), 61, 62, 266,

268, 271, 277
ISO-639 language code, 29
ISO-3166 country code, 29
is_single(), 82, 87, 153
is_super_admin(), 60, 62, 286
is_user_member_of_blog(),

282, 283, 284

J

Jaquith, Mark, 50, 247, 376
JavaScript, 316, 329. See also

statistics counters
JetPack, 342–343
Johnson, Charles, 394
JOIN, 75, 76, 105, 106, 114
jQuery Cycle plugin, 375

K

KCacheGrind, 344
keywords, Trac, 399
King, Alex, 55, 257, 297
K.I.S.S. methodology, 318

bindex.indd 416bindex.indd 416 12/6/12 1:09 AM12/6/12 1:09 AM

417

labels – multi-pass Loops

L

labels
custom post types, 121–122
custom taxonomies, 131–132

labels argument, 118, 121
LAMP (Linux, Apache, MySQL,

and PHP), 44–45, 346–347
LANGDIR, 29
languages

character set, 25
internationalization,

143–145, 184, 243
localization, 26, 29, 143,

145, 243
multilanguage capabilities,

WordPress, 26
Unicode UTF-8, 25
WordPress localizer, 29
WPLANG option, 26, 29

latest.tar.gz, 22
latest.zip, 22
LDAP, 391–392
leave it alone paradigm, mobile

access, 334–335
Lessig, Lawrence, 5
lighttpd, 9, 387
lightweight mobile, 335
limit login attempts, 354
Link, post format, 250
link categories, 126
Linux, 213. See also LAMP
Little, Mike, 2
load balancing, 349–350
load_plugin_textdomain(),

145
local development environment,

41–55
benefi ts, 43–44
best practice, 41
confi guration details, 46–53
defi ned, 42
deploying local changes,

53–55
deployment cycle, 42
enabling debugging, 48–50
plugin development, 53
reasons for using, 42–43

sandbox, 41, 42, 43, 55
theme development, 53
virtual local server names,

50–53
web server document root,

46–48
WordPress install, 45–46

local paths, plugins, 145–146
localization, 26, 29, 143, 145, 243
lock down wp-admin, 35
login

forcing SSL on login, 356
limiting login attempts, 354

Loops, 73–100
advanced queries, 91–92
content display, 73
customizing, 75, 81–82
diagram, 76
fl ow, 77–79
get_posts(), 81, 82, 87–88
global variables, 93–97
Halloween Store plugin, 194
multi-pass, 91
navigation links in, 85–86
nested, 90–91
overview, 73–74
page content generation,

74–75
paging in, 85–86
parameters, 83–85
query parameters to SQL,

75–76
query_posts(), 81, 86–87
resetting Loop data, 88–90
template tags, 79–81, 96–97
themes, 76–77
understanding, 74–79
working outside of, 97–99
WP_Query object, 82

loop, showcase, 226–227
lorem ipsum, 318

M

Machado, Eddie, 256
machine object. See MO
magazine themes, 256, 257

mailing lists, WordPress, 5,
405–406

.maintenance fi le, 35–36
maintenance mode, 35–36
make.wordpress.org, 408
MAMP, 10, 44, 45, 46, 47
manual advertising placement,

305–306
Marcotte, Ethan, 335
Mature, site status, 263
Maunder, Mark, 359
McInvale, Matt, 378
media directory, wp-content/

uploads, 37–38
Media Library, WordPress, 33, 37
Meetups, WordPress, 4, 407
memcache, 345, 388
memcached, 345
menu, plugin settings page,

158–160
menu management

disconnect, 247, 248, 377
theme enhancement,

246–248
menu_icon, 119
menu_name, 131
menu_position, 119
meta boxes, 169–174, 188–190
meta_compare parameter, 91–92
metadata, 133–137
microformats, 327–329
mirmillo.com, 51, 54
mirmillo.local, 51, 52, 53, 54
MO (machine object) language

fi les, 26
mobile access, user experience,

334–335
moderation method, comments,

351
Modernizr, 329, 330
monetizing WordPress site,

303–304
more tag, 81
MU (multi-user). See Multisite
Mugford, Dale, 335
Mullenweg, Matt, 2, 3. See also

Automattic
multi-pass Loops, 91

bindex.indd 417bindex.indd 417 12/6/12 1:09 AM12/6/12 1:09 AM

http://mirmillo.com
http://make.wordpress.org

418

Multisite (WordPress Multisite) – option.php fi le

Multisite (WordPress Multisite),
259–288

advantages, 261
Blog ID (site ID), 260,

265–266
blogs.dir directory, 37,

38, 261
coding for, 265–287
content integration via feeds,

393–394
database schema, 287–288
enabling, 261–262
functions, 266–270
is_multisite(), 61, 62,

266, 268, 271, 277
local setup, 53
options, 276–282
plugins, 264–265
restore_current_blog(),

267, 268, 269, 270
shortcode example (prowp2-
multisite-shortcode.
zip), 268–270

Super Admins, 61, 260, 265,
285–286

switch_to_blog(), 267,
268, 269, 270

terminology, 260
themes, 264
understanding, 259–262
WordPress MU, 2, 8, 259
WordPress versus,

260, 261
Multisite network

defi ned, 260
network-wide options,

276–282
roles, 264
settings (prowp2-
multisite-network-
settings.zip), 280–282

Settings menu, 265
stats, 286–287
users, 264, 282–285
working in, 262–265

Multisite Network Admin, 263
Multisite Network Admin menus,

274–275

Multisite sites
add users, 284
creating, 263–264, 270–274
defi ned, 260
managing, 263–264
restore_current_blog(),

267, 268, 269, 270
restoring, 267–270
site-specifi c database tables,

287–288
site-specifi c options, 276
statuses, 263
switching, 267–270

Multisite-specifi c database tables,
287

multi-user (MU). See Multisite
/mu-plugins directory, 37, 146,

283
MyISAM, 388, 390
MySQL. See also database; SQL

bbPress, 2, 379, 380, 403,
404, 405

caching hierarchy, 343
credentials, 357
enterprise-scale WordPress,

388
errors, wpdb class, 110–111
esc_sql(), 149
hosting prerequisites, 9
LAMP, 44–45, 346–347
load balancing, 349
MAMP, 10, 44, 45, 46, 47
MySQL-WordPress

confi guration, 14–17
query cache, 348
terminology, 9
WAMP, 45, 46, 47, 48, 49,

51, 213
WAMPSERVER, 45, 47

mysql_error(), 15, 16

N

_n(), 144
naked themes, 215
name, custom label, 121, 131
nameplate, 221
Nav Menus, default post type, 116

navigation
consistent, 310–312
global, 246, 310, 311, 312,

314, 318, 376, 377
links, in Loop, 85–86

needs-codex, 399
needs-docs, 399
needs-patch, 399
needs-refresh, 399
needs-testing, 399
needs-ui, 399
needs-unit-tests, 399
nested Loops, 90–91
network. See Multisite network
Network Admin. See Multisite

Network Admin
network_admin_menu Action

hook, 274–275
new.example.com, 27, 112
new_item, 121
new_item_name, 131
news sites, WordPress, 409–410
NextGen Gallery plugin, 37, 38
next_posts_link(), 97, 98
NFS/Samba share, 349
nginx, 44, 387
Nielson, Jakob, 318
nonces

check_admin_referer(),
147–148, 190, 280

defi ned, 147
secret keys, 147–148
Settings API, 160
wp_nonce_field(), 62,

147, 148, 171
not_found, 121
not_found_in_trash, 121

O

OAuth, 393
object caching, WordPress, 347
oEmbed, 294–295, 296, 297,

298, 381
opcode cache, 345
OpenID, 392–393
OpenID plugin, 392–393
option.php fi le, 63

bindex.indd 418bindex.indd 418 12/6/12 1:09 AM12/6/12 1:09 AM

http://new.example.com

419

options, Multisite – Plugin Directory

options, Multisite, 276–282
Options API, 63, 70, 182, 302
Options API functions, 63
options page, plugin, 160–169
ordering parameters, 84
O’Reilly, Tim, 7
outline structures, 319
Ozz, Andrew, 372

P

P2 theme, 371, 408
pages

as content, 76
content generation, Loop,

74–75
parameters, 83

Page, default post type, 115
Page Links To plugin, 376
Page re-Mash, 377–378
Page Speed, 315
page templates (custom page

templates), 243–245
page.php, 232–233
paging, in Loop, 85–86
parameters. See also Loops

meta_compare, 91–92
types, 83–85

parent themes, 215, 216, 217,
218, 220, 252, 253, 254, 255,
256. See also child themes

parent_item, 131
parent_item_colon, 121, 131
parse_query(), 74, 82
passwords, 354
patch/Diff fi le, 402
paths determination, plugins,

145–146
performance tuning, enterprise-

scale WordPress, 386–388
Perl, 45, 338
permalinks

advantages, 32–33
enabling, 32
get_permalink(), 97
SEO, 320–321
the_permalink Filter hook,

153

the_permalink() template
tag, 80

permissions
Apache, 356–357

PHP
Alternative PHP Cache, 345
bbPress, 2, 379, 380, 403,

404, 405
confi guration, .htaccess,

34
error level, 49
LAMP, 44–45, 346–347
MAMP, 10, 44, 45, 46, 47
opcode cache, 345
WAMP, 45, 46, 47, 48, 49,

51, 213
WAMPSERVER, 45, 47
web server caching, 345–346
WordPress, 2

PHPDoc, 59
php_error.log, 28
php-errors.log, 35
php.ini fi le, 28, 49, 345–346,

387, 391
phpMyAdmin tool, 10, 14, 44,

46, 54, 111, 388
php_value memory_limit, 28,

34
PHPXref for WordPress, 407
Ping-o-Matic, 323, 324
pings, 323–324
Planet WordPress, 410
pluggable functions, 63
pluggable.php fi le, 63
plugins, 139–210. See also

Halloween Store plugin;
specifi c plugins

activating functions,
142–143

advertising, 304–305
array of options, 157–158,

185
custom database tables,

180–182
Dashboard Widgets,

179–180
data validation, 148–151
deactivate, 37

deactivating functions,
142–143

determining paths, 145–146
fi lename, 140
folder structure, 140
hacking core compared to,

72
header, 140–141, 184–185
internationalization,

143–145
license, 141–142
local development

environment, 53
local paths, 145–146
meta box creation, 169–174
Multisite, 260, 264–265
/mu-plugins directory, 37,

146, 283
options, 156–158, 157–158
options page, 160–169
overview, 139–140
packaging, 140–146
publishing, to Plugin

Directory, 204–209
search your site, 332–334
security, 147–151, 357–360
settings, 156–169
shortcodes, 174
themes compared to, 215
uninstalling, 182–183
URL paths, 146
widget creation, 175–179
WordPress integration,

169–183
wp-content directory, 38
wp-content/plugins

directory, 36–37
WP_PLUGIN_DIR, 27
WP_PLUGIN_URL, 27

Plugin API, 64, 69
Plugin API functions, 64
Plugin Description fi eld, 204
Plugin Directory

online reference, 156, 407
publishing plugin to,

204–209
release new plugin version,

210

bindex.indd 419bindex.indd 419 12/6/12 1:09 AM12/6/12 1:09 AM

420

Plugin Name section – reference, core as

Plugin Name section, 204, 206
plugin settings page

Halloween Store plugin,
186–187

menu, 158–160
submenus, 158–160
top-level menu, 158–159

plugin submission, 402
Plugin URL fi eld, 204
plugin_dir_path(), 64,

145–146
plugin_dir_url(), 64
plugin.php fi le, 64
Plugins SubPanel, 36, 142, 143
plugins_url(), 146
PO (portable object) fi les, 26
podcasts, WordPress, 408–409
Pods Framework plugin, 379
pony-and-rainbow example, 224,

229
popular_items, 131
portability, themes, 215, 238, 242
portable object. See PO
POSH, 324, 325, 327
$_POST, 154
_post(), 77, 78, 82, 93
posts

as content, 76
parameters, 83

Post, default post type, 115
post formats

get_post_format(), 219,
220

list, 250
themes, 249–250
Twitter Tools, 298

$post global variable, 93–94
post process, functions in, 64
post revisions, WP_POST_

REVISIONS, 27
post statuses, 104
post types

custom, 116–125
custom post type template

fi les, 123–124
default, 115–116
labels, 121–122

post_status fi eld, 104

post_type_exists(), 125
Pound, 349
premium themes, 256–258. See

also theme frameworks
prepare(), 106–107, 109
previous_posts_link, 97, 98
printf(), 14, 144
privacy

history and, 307–308
local development

environment, 42–43
progressive enhancement,

330–331
project themes, 215–216. See also

child themes
Project Wonderful, 304, 306
prowp, 142
prowp2-custom-meta-box.zip,

172–174
prowp2-custom-widget.zip,

178–179
prowp2-multisite-add-

users.zip, 284
prowp2-multisite-network-

settings.zip, 280–282
prowp2-multisite-

shortcode.zip, 268–270
prowp2-reading-settings-

plugin.zip, 168–169
prowp2-settings-api-

plugin.zip, 163–164
prowp_create_menu(), 159
prowp_custom_css(), 155
prowp_email_new_comment(),

152
prowp_function(), 151
prowp_install(), 142
prowp_meta_box(), 170
prowp_meta_box_init(), 170,

172
prowp_multisite_create_

sites(), 271, 273
prowp_plugin_options,

157
prowp_profanity_filter(),

152
prowp_register_settings(),

161

prowp_register_widgets(),
175, 178

prowp_sanitize_options(),
162

prowp_sanitize_settings(),
166

prowp_save_meta_box(), 171
prowp_setting_section(),

166, 167
prowp_settings_init(), 166
prowp_settings_page(), 160,

161
prowp_widget(), 176
Public, site status, 263
public argument, 117, 130
publicly_queryable, 117
publishing plugins. See Plugin

Directory
publish_post, 154

Q

queries. See also MySQL; SQL
advanced, Loops, 91–92
MySQL query cache, 348
SAVEQUERIES, 27–28, 110
simple database queries,

106–108
query array, in themes, 28
query parameters to SQL, 75–76
query_posts(), 81, 86–87
query_var, 119, 129, 130
QuickPress panel, 19, 318
Quote, post format, 250

R

rainbow-and-pony example, 224,
229

RAMP, 55, 257, 386
Readme Standard, 206
readme.txt fi le, plugin

submission, 204–208
readme.txt validator, 206
Reddit, 347
redirects, URL, 34
reference, core as, 58–66

bindex.indd 420bindex.indd 420 12/6/12 1:09 AM12/6/12 1:09 AM

421

register custom post types – set_post_thumbnail()

register custom post types,
116–121

register_activation_hook(),
64, 142, 143, 185

register_deactivation_hook,
64, 143, 183

register_nav_menu(), 246
register_post_type(), 64,

116, 121
register_setting(), 161, 168,

188
register_taxonomy(), 65, 128,

129, 130, 133
register_uninstall_hook,

183
relationships, taxonomy, 127
Release Archive, 22–23
releasing new plugin version,

Plugin Directory, 210
Relevanssi, 333
remove users, 284
reporter-feedback, 399
reports, Trac, 400
“Requires at least” fi eld, readme

.txt, 206
resetting Loop data, 88–90
resources, 404–410. See also

Codex
responsive web design, 335–336
REST API, 300, 301
REST web service commands,

244
restore_current_blog(), 267,

268, 269, 270
restoring sites, 267–270
retrieving metadata, 136–137
reusable parts, 220–224
Revision, default post type, 116
Revolution theme, 257
rewind_posts(), 91
Rewrite API, 70
rewrite argument, 120, 130
rewriting rules, .htaccess,

33–34
Rich Text Widgets plugin, 371
robots.txt fi le, 322–323
Role Scoper plugin, 363, 367

roles, 360–364
capabilities overview,

362–363
CMS, 367–368
extending, 363–364
Multisite network, 264

root directory
.maintenance fi le, 36
modifying fi les, 23
php-errors.log, 35
WordPress installation, 10
wp-config.php, 24

Roots theme, 257–258
round-robin DNS, 349
RSS feeds, CMS and, 393–395
rsync, 349
rtl-feedback, 399

S

salt values, 25, 113, 355
sandbox, 41, 42, 43, 55
sanitization

data validation, 148–151
halloween_sanitize_
options, 188

prowp_sanitize_
options(), 162

prowp_sanitize_
settings(), 166

sanitizing functions, 150,
271

sanitize_email(), 150, 163
sanitize_text_field(), 63,

150, 163, 172, 177, 193, 280
save_post Action hook, 171,

172
SAVEQUERIES, 27–28, 110
scalability. See also cache

management
cache management, 343–348
enterprise-scale WordPress,

386–390
load balancing, 349–350

SCP, 212
Screenshots section, readme.

txt, 207

search engine optimization (SEO)
getting found, 320–324
permalinks, 32, 320–321
starter theme, 216

search engine results page (SERP),
240–241, 320

Search Everything, 333
search tickets, Trac software, 400
searchform.php, 242
searching your site, 331–334
search_items, 121, 131
search.php, 240–242
2nd-opinion, 399
secret keys

nonces, 147–148
using, 355–356
wp-config.php, 25

security, 352–360. See also
attacks; SSL

Apache permissions,
356–357

good passwords, 354
.htaccess, 35
login attempts, 354
move confi guration fi le, 354
move content directory, 355
MySQL credentials, 357
plugins, 147–151, 357–360
secret keys

nonces, 147–148
using, 355–356
wp-config.php, 25

table prefi x changes, 25–26,
354

Theme Installer, 213
WordPress updates, 352–353
WordPress version

information, 353
wp-config.php, 24, 25–26

Seidel, Oliver, 379
Semantic HTML, 324–326
SEO. See search engine

optimization
separate_items_with_commas,

131
separating concerns, 324
SERP. See search engine results page
set_post_thumbnail(), 64

bindex.indd 421bindex.indd 421 12/6/12 1:09 AM12/6/12 1:09 AM

422

set_post_type() – tags

set_post_type(), 125
Settings API, 70, 160–163, 164,

167, 187, 251
Settings menu, Multisite network,

265
set_transient(), 63, 302
setup_postdata(), 78, 88, 95,

99
SFTP, 53, 212
ShareThis plugin, 291
sharing, permalinks, 33
Shiftlett, Chris, 321
shortcodes

example (prowp2-
multisite-shortcode.
zip), 268–270

Halloween Store plugin,
190–191

plugins, 174
Shortcode API, 69–70, 174

showcase loop, 226–227
showcase.php, 245
show_in_admin_bar, 119
show_in_menu, 119
show_in_nav_menus, 118, 130
show_tagcloud, 130
show_ui, 117, 130
sidebar-page.php, 245
sidebar.php, 222–223
Simple LDAP Login plugin, 391
single.php, 231–232
singular_name, custom label,

121, 131
sister projects. See also WordPress

Developer Community
bbPress, 2, 379, 380, 403,

404, 405
BuddyPress, 2, 380, 382,

403, 405
future projects, 403

sites. See Multisite sites
site ID. See Blog ID
site load times, 314–315
SITECOOKIEPATH, 29
*_site_option() functions,

276–277
site_url(), 146

Slashdot, 347
slideshows, 226–227, 232, 245
social media buttons, 291–293
Social Media Widget plugin, 293
social networking badges,

292–294
software development workfl ow,

42
spam, 350–352
Spam, site status, 263
special post type functions,

124–125
sprintf(), 144
SQL. See also MySQL

injection attacks, 26, 106,
111, 148

INSERT, 108, 109
JOIN, 75, 76, 105, 106, 114
query format, 75
UPDATE, 108, 109
WHERE clause, 75, 108, 109

SSL
FORCE_SSL_ADMIN, 31, 356
FORCE_SSL_LOGIN, 30–31,

62, 356
force_ssl_login, 62
forcing, on login, 356
HTTPS, 30, 31, 62, 146, 356
plugins_url(), 146

Stable tag, readme.txt, 206
staging, deployment cycle, 42
StartBox theme, 258
starter themes, 216–217, 256
State of the Word keynote, 3
statistics counters, 337–343

AWStats, 338–340
Google Analytics, 340–342
JetPack, 342–343

Status, post format, 250
statuses, site, 263
stay updated, 352–353
Storey, Duane, 335
structuring information, user

experience, 318–319
style.css fi le, 217–218
subdirectory example, Multisite,

260

subdomain example, Multisite,
260

submenus, plugin settings page,
158–160

submitting plugin, 204. See also
Plugin Directory

Subscriber role, 361
Subversion. See SVN
Super Admin role, 362
Super Admins, 61, 260, 265,

285–286
Super Cache plugin, 38, 347, 388,

390
Support Forum Volunteers,

mailing list, 406
support forums, 404
supports argument, 118
survey, WordPress, 3–4
SVN (Subversion)

clients, 208
described, 22
hook into WordPress core,

401–402
setup, publishing plugins,

208–209
TortoiseSVN, 208–209, 210,

401–402
Trac software, 401
understanding, 401
updates, mailing list, 406

SVN Commit, 209, 210
switching sites, 267–270
switch_theme, 154
switch_to_blog(), 267, 268,

269, 270
syntax highlighting, 59

T

tables. See database tables
table prefi x, changing, 25–26,

354
$table_prefix, 25, 287
Tadlock, Justin, 257
tags

content sharing sites and,
324

bindex.indd 422bindex.indd 422 12/6/12 1:09 AM12/6/12 1:09 AM

423

tag cloud – the_title Filter hook

HTML5, 326, 329–330
parameters, 81, 84
taxonomy, 126

tag cloud, 97, 130, 132, 235, 241,
404

tag.php, 230
tags folder, SVN, 209
tar archives, 22
taxonomies

custom, 128–133
default, 126
get_taxonomies, 65
register_taxonomy(), 65,

128, 129, 130, 133
relationships, 127
table structure, 126–127
wp_insert_term, 65
wp_update_term, 65

taxonomies argument, 119
Taxonomy API, 65
taxonomy tables, 105–106
taxonomy.php fi le, 65
Technorati.com, 324, 327
template fi les. See also specifi c

template fi les
archival templates, 231
custom post type, 123–124
defi ned, 214

template hierarchy
archival, 231
attachment.php, 233
category.php, 229
content display, theme

creation, 233–234
defi ned, 233
fl owchart, 233–234
front-page.php, 225
index.php, 220

template tags
described, 79–81
global variables versus,

96–97
parameters, 81

“Tested up to” fi eld, readme
.txt, 206

Testers, mailing list, 406
testing, deployment cycle, 42

text editors, 59
the_author, 80
the_author_meta(), 95, 99
the_category(), 80
the_content Filter hook, 151,

152, 153
the_content_rss, 153
the_content()template tag,

80, 81
the_excerpt(), 80, 241
the_ID(), 80
Thematic theme, 240, 258, 371
themes, 211–258. See also child

themes; theme creation; theme
frameworks; Twenty Eleven;
specifi c themes

assets, 214–215
barebones, 215
Bones, 256
CMS support, 370–372
commercial, 3, 256, 257, 258
core, 58
described, 213–215
enhancements, 246–251
functions, 212
images, 214–215
installing, 212–213
local development

environment, 53
Loop, 76–77
magazine, 256, 257
menu management, 246–248
Multisite, 260, 264
naked, 215
overview, 211
P2, 371, 408
plugins compared to, 215
portability, 215, 238, 242
post formats, 249–250
premium, 256–258
professional, 258
project, 215–216
query array, 28
reasons for using, 211–212
starter, 216–217, 256
Theme Repository, 3, 53
Twenty Ten, 58, 212

Twenty Twelve, 58, 212
widget areas, 248–249
#wordpress-themes, 405
wp-content/themes

directory, 37
theme creation, 215–243. See also

content display
additional fi les, 235–243

author.php, 236–237
comments.php, 237–238
404.php, 235–236
functions.php,

238–240
searchform.php, 242
search.php, 240–242

getting started, 217–220
index.php fi le, 218–220
project themes vs. child

themes, 215–216
reusable parts, 220–224
starter themes, 216–217
style.css fi le, 217–218

Theme Customizer, 251
Theme directory, 212, 402, 407
theme frameworks, 256–258

Carrington theme, 257
Genesis theme, 257
purpose, 215–216, 256
sidebar.php, 223
StartBox theme, 258
Thematic theme, 240, 258,

371
theme creation, 215

theme hierarchy
child themes, 251–256
style.css fi le, 218

Theme Installer, 213
Theme Repository, 3, 53
Theme Settings Control Panel,

250–251
theme submission, 402
the_permalink Filter hook, 153
the_permalink() template tag,

80
the_tags(), 80
the_time, 80
the_title Filter hook, 153, 154

bindex.indd 423bindex.indd 423 12/6/12 1:09 AM12/6/12 1:09 AM

http://Technorati.com

424

the_title() template tag – user experience

the_title() template tag, 80,
81

three clicks rule, 318
$300 million difference, 316
tickets, Trac software, 398–401
time(), 36
_time(), 80
time parameters, 84
timeline, Trac, 401
TinyMCE, 371
TinyMCE Advanced plugin, 372
top-level menu, plugin settings

page, 158–159
Torbert, Michael, 357
TortoiseSVN, 208–209, 210,

401–402
Trac keywords, 399
Trac mailing list, 406
Trac software, 398–401
trackbacks, 323–324
traffi c statistics. See statistics

counters
transient caches, 301–303,

347–348, 388
translation functions, 143, 145,

184, 186
__() translation function, 143,

186
trash bin, 31, 104
trunk folder, SVN, 209
Tweetily, 292
Twenty Eleven

archive.php, 228
attachment.php, 233
author.php, 237
Automattic, 212
category.php, 228
child theme, 253–254
comments.php, 238
copy, 218
core theme, 58
CSS, 311
footer.php, 222
404.php, 235
front-page.php, 227
functions.php, 323
get_post_format(), 220

HTML5 tag elements, 217,
329–330

index.php, 219
Loop in, 79
MySQL query cache, 348
page templates, 245
post formats, 250
searchform.php, 242
search.php, 240, 241
sidebar.php, 223
single.php, 231
style.css, 218
the_excerpt(), 241
theme creation, getting

started, 217–220
Theme Customizer, 251
trackbacks, 323
Twitter Tools, 298
widget areas, 248, 249

Twenty Ten, 58, 212
Twenty Twelve, 58, 212
twenty_eleven(), 323
twentyeleven_setup(), 239
Twitter

API, 70, 297
Bootstrap, 257
404 error, 235
integrating, 296–298
shortcodes, 174
Status post format, 250
Tools plugin, 297–298
WordPress conversation, 7

U

Ubuntu Linux, 213
UI Group, 399, 405
ui-feedback, 399
Unicode UTF-8, 25
Uninstall hook, 182, 183
uninstalling plugins, 182–183
uninstall.php, 140, 182, 183,

184, 194–195
unique ID fi eld, 102, 103
UPDATE, 108, 109
update(), 109, 177, 193–194
update_blog_option(), 276

update_count_callback, 130
update_item, 131
update_option(), 63, 156–157
update_post_meta(), 135, 172
updates, security and, 352
update_site_option(), 63,

276, 280
updating metadata, 135
/upgrade directory, 38
Upgrade Notice section, readme

.txt, 208
upgrades, WordPress, 352
/uploads directory, 37–38, 349
uploads directory, load balancing,

349
URLs

beautiful, 321
canonical, 76
esc_url(), 149, 163
ID-driven, 32
nonce, 148
paths, plugins, 146
redirects, 34

usability, 316–318
usability testing, 316–318
users, Multisite network, 264,

282–285
User API functions, 64
user experience, 309–336

consistent navigation,
310–312

CSS3, 330–331
easy to fi nd content, 314
getting found, 320–324
HTML5, 329–330
JavaScript usage, 316
mobile access, 334–335
principles, 309–316
questions to ask, 310
responsive web design,

335–336
searching your site, 331–334
site load times, 314–315
structuring information,

318–319
usability, 316–318
usability testing, 316–318

bindex.indd 424bindex.indd 424 12/6/12 1:09 AM12/6/12 1:09 AM

425

username_exists() – #wordpress-ui

visual design elements,
312–313

web standards, 324–329
username_exists(), 64
user.php fi le, 64
user_register Action hook,

155, 156
ux-feedback, 399

V

Valdrighi, Michel, 2
valid HTML, 326–327
version information, WordPress,

353
version_compare(), 142
Video, post format, 250
view tickets, Trac software, 400
view_item, 121
VIP Program, WordPress, 385
virtual local server names, 50–53
visual design elements, 312–313

W

W3 Total Cache, 347
Walters, Matt, 358
WAMP, 45, 46, 47, 48, 49, 51,

213
WAMPSERVER, 45, 47
web server caching, 343, 345–347
web standards, 324–329
WebGrind, 344
Webmaster Tools, Google, 321,

322, 327, 334
WHERE clause, 75, 108, 109
widget(), 194
widgets

CMS support, 370–372
creating, 175–179
Dashboard Widgets,

179–180
Dashboard Widgets API,

70, 179
prowp2-custom-widget
.zip, 178–179

Widgets API, 69, 175, 179

widget areas, theme
enhancement, 248–249

widget functions, Halloween
Store plugin, 192–194

widgets_init Action hook, 175,
178

wildcard IP addresses, 35
Word, Ben, 257
WordCamps, 3, 4, 407
WordFence Security plugin,

359–360
WordPress. See also content

management system;
enterprise-scale WordPress;
resources; WordPress
Developer Community

Alltop, 410
bleeding-edge version, 22,

401
chat, 405
in commercial situations,

5–6
community intersection, 4–5
cron, 31, 338
current state, 3–4
defi ned, 1–2
development updates, 408
directories, 23
downloading, 21–23
external resources, 406–407
feeding WordPress upstream,

292
fi le structure, 23
GPL, 5–6
history, 2
hosting options, 8–9
Ideas area, 407–408
installation

do it yourself, 10–17
fi ve-minute, 2, 10, 13, 19
local development

environment, 45–46
problems, 14–17

integration, plugins, 169–183
localizer, 29
mailing lists, 5, 405–406
Media Library, 33, 37

Meetups, 4, 407
multilanguage capabilities,

26
Multisite versus, 260, 261
news sites, 409–410
Notable Users showcase, 4
PHP, 2
Planet, 410
podcasts, 408–409
popularity, 3–6
Release Archive, 22–23
survey, 3–4
system complexity, 344–345

#wordpress, 405
WordPress core. See core
WordPress database. See database
WordPress Developer

Community, 397–410.
See also sister projects

contributing to WordPress,
397–403

development updates, 408
documentation, 402–403
hacking core, 72
overview, 2
plugin submission, 402
resources, 404–410
theme submission, 402
Trac software, 398–401
working on core, 401–402

WordPress File Monitor, 358–359
WordPress in enterprise. See

enterprise-scale WordPress
WordPress in Your Language

Codex page, 26
WordPress Language File

Repository, 26
WordPress MU. See Multisite
WordPress Multisite. See

Multisite
WordPress VIP Program, 385
wordpress.com, 4
#wordpress-dev, 405
wordpress.org, 4
#wordpress-themes, 405
WordPress.TV, 3, 407
#wordpress-ui, 405

bindex.indd 425bindex.indd 425 12/6/12 1:09 AM12/6/12 1:09 AM

http://wordpress.com
http://wordpress.org

426

workfl ow, CMS and – XAMPP

workfl ow, CMS and, 368–370
WP e-Commerce plugin, 380
WP Late Night, 409
WP Security Scan plugin, 26,

354, 357–358
wp_2_commentmeta, 288
wp_2_comments, 288
wp_2_links, 288
wp_2_options, 288
wp_2_postmeta, 288
wp_2_posts, 288
wp_2_term_relationships,

288
wp_2_terms, 288
wp_2_term_taxonomy, 288
wp_add_dashboard_widget(),

180
wp-admin, 23, 35
wp_blogs, 287
wp_blog_versions, 287
wp-cache-config.php, 38
WPCandy.com, 53, 409
WP-CMS Post Control,

368–369
wp_commentmeta, 103
wp_comments, 103, 105, 113,

114, 388
wp-config.php, 24–31

changing table prefi x,
25–26, 354

moving, to parent directory,
24, 354

moving content directory,
27, 355

WordPress installation, 11
wp-config-sample.php, 10,

24, 402
wp-content directory, 36–38
wp-content/advanced-cache.

php, 30, 38
WP_CONTENT_DIR, 27
wp-content/plugins directory,

36–37
wp-content/themes directory,

37

wp-content/upgrade directory,
38

wp-content/uploads directory,
37–38, 349

WP_CONTENT_URL, 27
wp_dashboard_setup Action

hook, 180
WP-DB Backup plugin, 38
wpdb class. See database class
wp-DBManager plugin, 54, 388
WP_DEBUG, 26, 28, 49
WPEngineer.com, 409
WP-Exploit Scanner, 358
wp_foot(), 222
wp_footer, 154, 155
WPForce.com, 409
wp_get_current_user(), 61
wp_get_theme(), 66
wp_head, 154, 155, 156, 221
WP_HOME, 26
wp-includes, 23, 62–65
wp_insert_post, 64
wp_insert_term, 65
wp_insert_user, 64
wp_kses(), 150, 177
WPLANG option, 26, 29
wp_links, 103
wp_list_bookmarks(), 97
wp_list_categories(), 97, 98
wp_list_comments(), 238
wp_list_pages(), 97, 246, 247,

378
wp-login.php, 33, 58
wp_logout, 63
wp_mail, 63
WP_MEMORY_LIMIT, 28
wpmu_create_blog(), 270–271,

272, 273
wp_nav_menu(), 247, 270
wp_nonce_field(), 62, 147,

148, 171
wp_options, 103, 112, 113, 157,

280
wp_page_menu(), 98
WP_PLUGIN_DIR, 27

WP_PLUGIN_URL, 27
wp_postmeta, 103, 134
WP_POST_REVISIONS, 27
wp_posts, 103, 104, 105, 106,

108, 112, 114
WP_Query object, 82, 122–123
wp_rand, 63
WPRealm.com, 409
wp_redirect, 63
wp_registration_log, 287
wp_reset_postdata(), 88–89
wp_reset_query(), 88, 89–90
WP-Security Scan, 357–358
wp_set_password, 63
wp_signups, 287
wp_site, 287
wp_sitecategories, 287
wp_sitemeta, 287
WP_SITEURL, 26
WP-Super Cache, 347
wp_tag_cloud(), 97, 132
wp_term_relationships, 103,

105, 106, 126, 127
wp_terms, 103, 105, 126
wp_term_taxonomy, 103, 105,

126, 127
wp_title, 153
WPTouch, 335
wp_transition_post_

status(), 369
WP_UNINSTALL_PLUGIN, 183,

195
wp_update_term, 65
wp_update_user, 64
wp_upload_dir(), 146
wp_usermeta, 103, 114, 287
wp_users, 103, 104, 105, 113,

114, 287
$wp_version, 142
WP_Widget class, 175–176

X

_x(), 145
XAMPP, 10, 45

bindex.indd 426bindex.indd 426 12/6/12 1:09 AM12/6/12 1:09 AM

http://WPCandy.com
http://WPEngineer.com
http://WPForce.com
http://WPRealm.com

427

XHTML Friends Network (XFN) – Zombie category

XHTML Friends Network
(XFN), 327, 328

XML
data, generic, 299–301
Google XML Sitemaps

plugin, 321–322
XML-RPC, mailing list, 405
XSS. See cross-site scripting

Y

Yet Another Related Post plugin,
378

YouTube video integration,
295–296

YSlow!, 315, 386

Z

zed1.com, 2
Zen Garden, CSS, 324
zip archives, 22
Zombie category, 86, 87,

229, 230

bindex.indd 427bindex.indd 427 12/6/12 1:09 AM12/6/12 1:09 AM

http://zed1.com

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers

only and is valid for the fi rst 6 consecutive monthly

billing cycles. Safari Library is not available in all

countries.

badvert.indd 428badvert.indd 428 12/6/12 1:08 AM12/6/12 1:08 AM

http://www.safaribooksonline.com/wrox

Related Wrox Book

Professional WordPress Plugin Development
ISBN: 978-0-470-91622-3

As one of the most popular open source content
management systems available today, WordPress
boasts a framework that allows you to easily
customize and extend it through plugins. This
comprehensive book shows you how plugins
work, reviews the tools and APIs in WordPress,
and demonstrates how to extend the functionality
of WordPress with plugins. The trio of authors
provides a practical, solutions-based approach
along with a collection of timely examples and
plenty of code, all aimed at clearly explaining
how to create a plugin file, work with users,
integrate widgets, add menus and submenus,
secure your plugins, and more. You will quickly
come to understand how to develop custom
plugins so that you can take WordPress to the
next corporate and enterprise level.

Related Wrox Book

Professional WordPress Plugin Development
ISBN: 978-0-470-91622-3

As one of the most popular open source content
management systems available today, WordPress
boasts a framework that allows you to easily
customize and extend it through plugins. This
comprehensive book shows you how plugins
work, reviews the tools and APIs in WordPress,
and demonstrates how to extend the functionality
of WordPress with plugins. The trio of authors
provides a practical, solutions-based approach
along with a collection of timely examples and
plenty of code, all aimed at clearly explaining
how to create a plugin file, work with users,
integrate widgets, add menus and submenus,
secure your plugins, and more. You will quickly
come to understand how to develop custom
plugins so that you can take WordPress to the
next corporate and enterprise level.

	Professional WordPress® Design and Development
	Copyright
	Credits
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Chapter 1: First Post
	What Is WordPress?
	Popularity of WordPress
	Current State
	Intersecting the Community
	WordPress and the GPL

	Content and Conversation
	WordPress as a Content Management System
	Creating Conversation

	Getting Started
	Hosting Options
	Do It Yourself Installation

	Finishing Up
	First-Time Administration
	First Post

	Summary

	Chapter 2: Code Overview
	Downloading
	Download Locations
	Available Formats
	Release Archive

	Directory and File Structure
	WordPress Configuration
	wp-config.php File
	Advanced wp-config Options
	.htaccess
	The .maintenance File

	wp-Content User Playground
	Plugins
	Themes
	Uploads and Media Directory
	Upgrade Directory
	Custom Directories

	Summary

	Chapter 3: Working with WordPress Locally
	Benefits of Working Locally
	Typical Deployment Cycle
	Why So Much Process?

	Tools for Component Administration
	Getting Your Development Stack
	Adding WordPress to the Local Install

	Configuration Details
	Managing the Web Server Document Tree
	Enabling Debug Information
	Handling Local and Production Database
	Creating Virtual Local Server Names
	Local Theme and Plugin Development

	Deploying Local Changes
	Summary

	Chapter 4: Tour of the Core
	What's in the Core?
	Using the Core as a Reference
	Inline Documentation
	Finding Functions
	Exploring the Core
	Deprecated Functions

	WordPress Codex and Resources
	What Is the Codex?
	Using the Codex
	Function Reference
	WordPress APIs
	Codex Controversy

	Don't Hack the Core!
	Why Not?
	Alternatives to Hacking the Core

	Summary

	Chapter 5: The Loop
	Understanding the Loop
	From Query Parameters to SQL
	Understanding Content in WordPress
	Putting the Loop in Context
	Flow of the Loop

	Template Tags
	Commonly Used Template Tags
	Tag Parameters

	Customizing the Loop
	Using the WP_Query Object
	Building a Custom Query
	Adding Paging to a Loopss
	Using query_ posts()
	Using get_posts()
	Resetting a Query
	More Than One Loop
	Advanced Queries

	Global Variables
	Post Data
	Author Data
	User Data
	Environmental Data
	Global Variables or Template Tags?

	Working Outside the Loop
	Summary

	Chapter 6: Data Management
	Database Schema
	Table Details
	WordPress Content Tables
	WordPress Taxonomy Tables

	WordPress Database Class
	Simple Database Queries
	Complex Database Operations
	Dealing with Errors

	Direct Database Manipulation
	Summary

	Chapter 7: Custom Post Types, Custom Taxonomies, and Metadata
	Understanding Data in WordPress
	What Is a Custom Post Type?
	Register Custom Post Types
	Setting Post Type Labels
	Working with Custom Post Types
	Custom Post Type Template Files
	Special Post Type Functions

	WordPress Taxonomy
	Default Taxonomies
	Taxonomy Table Structure
	Understanding Taxonomy Relationships

	Building Your Own Taxonomies
	Custom Taxonomy Overview
	Creating Custom Taxonomies
	Setting Custom Taxonomy Labels
	Using Your Custom Taxonomy

	Metadata
	What Is Metadata?
	Adding Metadata
	Updating Metadata
	Deleting Metadata
	Retrieving Metadata

	Summary

	Chapter 8: Plugin Development
	Plugin Packaging
	Creating a Plugin File
	Creating the Plugin Header
	Plugin License
	Activating and Deactivating Functions
	Internationalization
	Determining Paths

	Plugin Security
	Nonces
	Data Validation and Sanitization

	Know Your Hooks: Actions and Filters
	Actions and Filters
	Popular Filter Hooks
	Popular Action Hooks

	Plugin Settings
	Saving Plugin Options
	Array of Options
	Creating a Menu and Submenus
	Creating an Options Page

	WordPress Integration
	Creating a Meta Box
	Shortcodes
	Creating a Widget
	Creating a Dashboard Widget
	Creating Custom Tables
	Uninstalling Your Plugin

	Creating a Plugin Example
	Publishing to the Plugin Directory
	Restrictions
	Submitting Your Plugin
	Creating a readme.txt File
	Setting Up SVN
	Publishing to the Plugin Directory
	Releasing a New Version

	Summary

	Chapter 9: Theme Development
	Why Use a Theme?
	Installing a Theme
	FTP Installation
	Theme Installer

	What Is a Theme?
	Template Files
	CSS
	Images and Assets
	Plugins

	Creating Your Own Theme
	Project Themes vs. Child Themes
	What to Look for in a Starter Theme

	Creating Your Own Theme: Getting Started
	Essential File: Style.css
	Showing Your Content: Index.php
	Showing Your Content in Different Ways: Index.php

	Creating Your Own Theme: DRY
	Header.php
	Footer.php
	Sidebar.php
	Deviations from the Norm: Conditional Tags

	Creating Your Own Theme: Content Display
	Customizing Your Homepage: Front-Page.php
	Show Your Older Posts by Date: Archive.php
	Showing Only One Category: Category.php
	Show Posts of a Specific Tag: Tag.php
	Other Archival Templates
	How to Show a Single Post: Single.php
	Display a Page: Page.php
	Display Post Attachments: Attachment.php
	Template Hierarchy

	Creating Your Own Theme: Additional Files
	Handle 404 Errors: 404.php
	Author.php
	Comments.php
	Adding Functionality to Your Templates: Functions.php
	Search.php
	SearchForm.php
	Other Files

	Custom Page Templates
	When to Use Custom Page Templates
	How to Use Custom Page Templates
	Stock Twenty Eleven Page Templates

	Other Theme Enhancements
	Menu Management
	Widget Areas
	Post Formats
	Theme Settings
	Theme Customizer

	Theme Hierarchy and Child Themes
	Premium Themes and Other Theme Frameworks
	Bones Theme
	Carrington Theme
	Genesis Theme
	Hybrid Core Theme
	Roots
	StartBox Theme
	Thematic Theme

	Summary

	Chapter 10: Multisite
	What Is Multisite?
	Multisite Terminology
	Differences
	Advantages of Multisite
	Enabling Multisite

	Working in a Network
	Network Admin
	Creating and Managing Sites
	Working with Users and Roles
	Themes and Plugins
	Settings
	Domain Mapping

	Coding for Multisite
	Blog ID
	Common Functions
	Creating a New Site
	Network Admin Menus
	Multisite Options
	Users in a Network
	Super Admins
	Network Stats

	Multisite Database Schema
	Multisite-Specific Tables
	Site-Specific Tables

	Summary

	Chapter 11: Content Aggregation
	Getting Noticed
	Social Media Buttons
	Feeding WordPress Upstream
	Buttons, Badges, or Both?

	Simple Social Networking Badges
	Collecting External Content
	Integrating a YouTube Video
	Integrating Twitter
	Google Maps
	Integrating Facebook
	Generic XML Data
	Transients

	Advertising
	Monetizing Your Site
	Setting Up Advertising

	Privacy and History
	Summary

	Chapter 12: Crafting a User Experience
	User Experience Principles
	Consistent Navigation
	Visual Design Elements
	Making Content Easy to Find
	Site Load Times
	Using JavaScript

	Usability and Usability Testing
	Structuring Your Information
	Getting Your Site Found
	Duplicate Content
	Trackbacks and Pings
	Tags and Content Sharing Sites

	How Web Standards Get Your Data Discovered
	Semantic HTML
	Valid HTML
	Microformats
	HTML5
	CSS3

	Searching Your Own Site
	Weaknesses of the Default Search
	Alternatives and Plugins to Help

	Mobile Access and Responsive Web Design
	Leave It Alone
	Lightweight Mobile
	Responsive Design

	Summary

	Chapter 13: Statistics, Scalability, Security, and Spam
	Statistics Counters
	AWStats
	Google Analytics
	JetPack by WordPress.com

	Cache Management
	WordPress System Complexity
	Web Server Caching and Optimization
	WordPress Object Caching
	Transient Caches
	MySQL Query Cache

	Load Balancing Your WordPress Site
	Dealing with Spam
	Comment Moderation and CAPTCHAs
	Automating Spam Detection

	Securing Your WordPress Site
	Staying Up-to-Date
	Hiding WordPress Version Information
	Limit Login Attempts
	Using Good Passwords
	Changing Your Table Prefix
	Moving Your Configuration File
	Moving Your Content Directory
	Using the Secret Key Feature
	Forcing SSL on Login and Admin
	Apache Permissions
	MySQL Credentials
	Recommended Security Plugins

	Using WordPress Roles
	Subscriber Role
	Contributor Role
	Author Role
	Editor Role
	Administrator Role
	Super Admin Role
	Role Overview
	Extending Roles

	Summary

	Chapter 14: WordPress as a Content Management System
	Defining Content Management
	Workflow and Delegation
	User Roles and Delegation
	Workflow

	Content Organization
	Theme and Widget Support
	Homepages
	Featured Content Pages
	Content Hierarchy

	Interactivity Features
	Forums
	Forms
	E-Commerce

	Other Content Management Systems
	WordPress Integration
	Where Not to Use WordPress

	Summary

	Chapter 15: WordPress in the Enterprise
	Is WordPress Right for Your Enterprise?
	When WordPress Isn't Right for You
	Scalability
	Performance Tuning
	Caching
	Regular Maintenance
	Hardware Scaling

	Integration with Enterprise Identity Management
	LDAP and Active Directory
	OpenID and OAuth

	Content Integration via Feeds
	Summary

	Chapter 16: WordPress Developer Community
	Contributing to WordPress
	Understanding Trac
	Working on the Core
	Submitting Plugins and Themes
	Documentation

	Sister Projects
	BuddyPress
	bbPress
	Future Projects

	Resources
	Codex
	Support Forums
	WordPress Chat
	Mailing Lists
	External Resources
	WordCamp and Meetups
	WordPress.TV
	Theme/Plugin Directories
	WordPress Ideas
	WordPress Development Updates
	Make WordPress.org
	WordPress Podcasts
	WordPress News Sites

	Summary

	Index
	Advertisement

